Claim Missing Document
Check
Articles

Found 2 Documents
Search

Aplikasi Berbagai Marka Aromatik pada Varietas Padi Indonesia Djarot Sasongko Hami Seno; Satya Nugroho; Tri Joko Santoso; Dimas Adrianto; Dewi Praptiwi; Aniversari Apriana; Zainal Alim Mas'ud
Jurnal Ilmu Pertanian Indonesia Vol. 16 No. 3 (2011): Jurnal Ilmu Pertanian Indonesia
Publisher : Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1128.645 KB)

Abstract

This research applied various badh2.7 and badh2.2 fragrant markers (Bradbury et al., 2005b, Lang and Buu 2008, Shi et al., 2008, Sakthivel et al., 2009) on popular Indonesia non-fragrant (Ciherang, Fatmawati) and fragrant (Pandan wangi, Rojo Lele, Mentik Wangi, Gunung Perak, Pulu mandoti, Pare Kembang, Sintanur) rice varieties. For comparison, IR64, Nippon bare and Taipei 309 were included. Rice DNA samples were isolated from young  leaves, and PCR amplified using each of those fragrant markers. Results using all badh2.7 markers were consistently supported the existence of 2 group badh2.7 mutation pattern, while the use of badh2.2 marker indicated that there was no ex on 2 mutation. Badh2.7 sequence analysis of non-fragrant Ciherang, and aromatik member of group 1 (Pandan Wangi), as well as group 2 (Mentik Wangi) showed different mutation pattern. 
RESPON PADI TRANSGENIK CV. NIPPONBARE GENERASI T1 YANG MENGANDUNG GEN Oryza sativa DEHYDRATION-RESPONSE ELEMENT BINDING 1A (OsDREB1A) TERHADAP CEKAMAN SALINITAS Tri Joko Santoso; Aniversari Apriana; Atmitri Sisharmini; Kurniawan Rudi Trijatmiko
BERITA BIOLOGI Vol 11, No 2 (2012)
Publisher : Research Center for Biology-Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/beritabiologi.v11i2.494

Abstract

Salinity is one of the abiotic constraints in the cultivation of rice crop. One of the reasons agricultural land becomes saline is due to the intrusion of seawater into the mainland as a result of global climate change. Dehydration-responsive element binding (DREB) gene is a plant -specific transcription factor gene that have important role in regulating plant responses to abiotic stresses, including high salinity. Transgenic rice plants cv. Nipponbare carrying OsDREB1A gene have been generated. However, study of the response of putative transgenic plants to salinity has not been done. The research objective is to study the response of T1 generation Nipponbare-OsDREB1A transgenic rice plants to salinity stress. The result showed that the response of putative transgenic rice Nipponbare-OsDREB1A to salinity stress 25 mM and 150 mM NaCl indicated a level of tolerance varies from highly sensitive to highly tolerance. These variations were possibly occurred because of the segregation state of the T1 generation transgenic rice. Based on damage symptom scoring and PCR analysis provided information that transgenic rice plant cv. Nipponbare-OsDREB1A which showed positive PCR had a very high tolerance to salinity stress 150 mM compared with non-transgenic rice cv. Nipponbare.