Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : JURNAL ILMIAH PENDIDIKAN FISIKA AL BIRUNI

Electrospun nylon-6 nanofibers and their characteristics Ida Sriyanti; Meily P Agustini; Jaidan Jauhari; Sukemi Sukemi; Zainuddin Nawawi
Jurnal Ilmiah Pendidikan Fisika Al-Biruni Vol 9, No 1 (2020): Jurnal Ilmiah Pendidikan Fisika Al-Biruni
Publisher : Universitas Islam Negeri Raden Intan Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (645.62 KB) | DOI: 10.24042/jipfalbiruni.v9i1.5747

Abstract

The purposes of this research were to investigate the synthesized Nylon-6 nanofibers using electrospinning technique and their characteristics. The method used in this study was an experimental method with a quantitative approach. Nylon-6 nanofibers have been produced using the electrospinning method. This fiber was made with different concentrations, i.e. 20% w/w (FN1), 25% w/w (FN2), and 30% w/w (FN3). The SEM results show that the morphology of all nylon-6 nanofibers) forms perfect fibers without bead fiber. Increasing fiber concentration from 20% w/w to 30% w/w results in bigger morphology and fiber diameter. The dimensions of the FN1, FN2, and FN3 fibers are 1890 nm, 2350 nm, and 2420 nm, respectively. The results of FTIR analysis showed that the increase in the concentration of nylon-6 (b) and the electrospinning process caused a peak shift in the amide II group (CH2 bond), the carbonyl group and the CH2 stretching of the amide III group from small wave numbers to larger ones. The results of XRD characterization showed that the electrospinning process affected the changes in the XRD pattern of nylon-6 nanofiber (FN1, FN2, and FN3) in the state of semi crystal. Nylon-6 nanofibers can be used for applications in medicine, air filters, and electrode for capacitors
The morphology of polyvinylpyrrolidone nanofibers containing Anredera cordifolia leaves Ida Sriyanti; Muhammad Rama Almafie; Yuda Prasetya Nugraha; Meutia Kamilatun Nuha Ap Idjan; Jaidan Jauhari
Jurnal Ilmiah Pendidikan Fisika Al-Biruni Vol 10, No 2 (2021): Jurnal Ilmiah Pendidikan Fisika Al-Biruni
Publisher : Universitas Islam Negeri Raden Intan Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1056.403 KB) | DOI: 10.24042/jipfalbiruni.v10i2.8820

Abstract

The electrospinning method has been used successfully to make polyvinylpyrrolidone nanofiber containing Anredera cordifolia leaves (BLE). The research methods used were qualitative and pure experiment method. Polyvinilpirolidone nanofibers containing BLE were prepared with three mass variations of the polyvinylpyrrolidone (% w/w), namely 12%, 10%, and 8% w/w, respectively. The results of the macroscopic photo show that the fiber structure looks white for PVP nanofibers and yellow for PVP/BLE nanofibers. The fiber morphology was analyzed using SEM and the results showed that PVP and all PVP/BLE nanofibers were like a continuous strand of crossbars with a diameter of 590 – 1190 nm. The decrease in the concentration of the PVP polymer led to a reduction in the diameter of the resulting nanofibers. The coefficients of variance (ε), of the PVP, BLE1, BLE2, and BLE3 nanofibers were 0.06, 0.09, 0.11, and 1.22, respectively. The physicochemical structure of the nanofibers was evaluated using XRD and FTIR. The chemical analysis (FTIR) showed that there was a molecular interaction between Anredera cordifolia leaves extract and polyvinylpyrrolidone in the form of hydrogen bonds. The physics analysis (XRD) shows the effect of the electrospinning process, which is to change the structure of BLE crystals to semi crystals. The application of PVP/BLE nanofiber for wounds dressing
The morphology of polyvinylpyrrolidone nanofibers containing Anredera cordifolia leaves Ida Sriyanti; Muhammad Rama Almafie; Yuda Prasetya Nugraha; Meutia Kamilatun Nuha Ap Idjan; Jaidan Jauhari
Jurnal Ilmiah Pendidikan Fisika Al-Biruni Vol 10, No 2 (2021): Jurnal Ilmiah Pendidikan Fisika Al-Biruni
Publisher : Universitas Islam Negeri Raden Intan Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/jipfalbiruni.v10i2.8820

Abstract

The electrospinning method has been used successfully to make polyvinylpyrrolidone nanofiber containing Anredera cordifolia leaves (BLE). The research methods used were qualitative and pure experiment method. Polyvinilpirolidone nanofibers containing BLE were prepared with three mass variations of the polyvinylpyrrolidone (% w/w), namely 12%, 10%, and 8% w/w, respectively. The results of the macroscopic photo show that the fiber structure looks white for PVP nanofibers and yellow for PVP/BLE nanofibers. The fiber morphology was analyzed using SEM and the results showed that PVP and all PVP/BLE nanofibers were like a continuous strand of crossbars with a diameter of 590 – 1190 nm. The decrease in the concentration of the PVP polymer led to a reduction in the diameter of the resulting nanofibers. The coefficients of variance (ε), of the PVP, BLE1, BLE2, and BLE3 nanofibers were 0.06, 0.09, 0.11, and 1.22, respectively. The physicochemical structure of the nanofibers was evaluated using XRD and FTIR. The chemical analysis (FTIR) showed that there was a molecular interaction between Anredera cordifolia leaves extract and polyvinylpyrrolidone in the form of hydrogen bonds. The physics analysis (XRD) shows the effect of the electrospinning process, which is to change the structure of BLE crystals to semi crystals. The application of PVP/BLE nanofiber for wounds dressing
Electrospun nylon-6 nanofibers and their characteristics Ida Sriyanti; Meily P Agustini; Jaidan Jauhari; Sukemi Sukemi; Zainuddin Nawawi
Jurnal Ilmiah Pendidikan Fisika Al-Biruni Vol 9, No 1 (2020): Jurnal Ilmiah Pendidikan Fisika Al-Biruni
Publisher : Universitas Islam Negeri Raden Intan Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/jipfalbiruni.v9i1.5747

Abstract

The purposes of this research were to investigate the synthesized Nylon-6 nanofibers using electrospinning technique and their characteristics. The method used in this study was an experimental method with a quantitative approach. Nylon-6 nanofibers have been produced using the electrospinning method. This fiber was made with different concentrations, i.e. 20% w/w (FN1), 25% w/w (FN2), and 30% w/w (FN3). The SEM results show that the morphology of all nylon-6 nanofibers) forms perfect fibers without bead fiber. Increasing fiber concentration from 20% w/w to 30% w/w results in bigger morphology and fiber diameter. The dimensions of the FN1, FN2, and FN3 fibers are 1890 nm, 2350 nm, and 2420 nm, respectively. The results of FTIR analysis showed that the increase in the concentration of nylon-6 (b) and the electrospinning process caused a peak shift in the amide II group (CH2 bond), the carbonyl group and the CH2 stretching of the amide III group from small wave numbers to larger ones. The results of XRD characterization showed that the electrospinning process affected the changes in the XRD pattern of nylon-6 nanofiber (FN1, FN2, and FN3) in the state of semi crystal. Nylon-6 nanofibers can be used for applications in medicine, air filters, and electrode for capacitors