Claim Missing Document
Check
Articles

Found 7 Documents
Search

KAJIAN NUMERIK DAN EKSPERIMENTAL PROSES PERPINDAHAN PANAS DAN PERPINDAHAN MASSA PADA PENGERINGAN Ary Santony; Himsar Ambarita; Dian M Nasution; Andianto P; Mahadi .; Suprianto .
Jurnal Dinamis Vol 5, No 1 (2017): DINAMIS
Publisher : Jurnal Dinamis

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pengeringan merupakan proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas untuk menguapkan kandungan air dari bahan yang akan dikeringkan. Penelitian ini dilakukan dengan cara eksperimen dan simulasi. Produk hasil pertanian, yaitu kentang dipilih sebagai objek penelitian ini. Penelitian secara eksperimen dilakukan dengan mengalirkan udara panas ke arah kentang dengan kecepatan, temperatur dan RH konstan. Kemudian data temperatur serta massa yang berubah pada kentang diukur dan dicatat secara otomatis menggunakan Agilent dan Load Cell. Selain melakukan eksperimen, penelitian ini juga melakukan simulasi untuk menampilkan distribusi temperatur yang terjadi pada kentang selama pengeringan dan membandingkan hasil yang diperoleh secara numerik dengan hasil yang diperoleh secara eksperimen. Simulasi dilakukan dengan menggunakan perangkat lunak CFD yaitu Ansys Fluent 14.5. Pada hasil eksperimen, diperoleh bahwa temperatur cenderung meningkat apabila waktu pengeringan bertambah. Temperatur awal kentang adalah 301,11 K. Temperatur tertinggi setelah dua jam melakukan pengeringan terletak pada permukaan kentang, yaitu 316,304 K. Sedangkan temperatur pada titik tersebut yang diperoleh dari hasil simulasi adalah 316,972 K. Pada eksperimen, massa kentang cenderung berkurang apabila waktu pengeringan bertambah. Massa awal kentang sebelum dikeringkan adalah 75 gr. Hasil pengukuran massa kentang setelah dua jam melakukan pengeringan adalah 63 gr. Sedangkan massa kentang yang diperoleh dari hasil simulasi adalah 66,58 gr. Sehingga diperoleh ralat antara hasil eksperimen dan numerik berturut-turut pada pengukuran temperatur dan massa adalah 0,21% dan  5,09%.  
PERBANDINGAN INTENSITAS RADIASI SURYA HASIL PENGUKURAN DI KOTA MEDAN DENGAN SIMULASI TEORITIS MENGGUNAKAN VISUAL BASIC 6.0 Christofel P. L; Tulus B. Sitorus; Farel H. Napitupulu; Himsar A; Dian M. Nasution; Andianto P
Jurnal Dinamis Vol 4, No 1 (2016): DINAMIS
Publisher : Jurnal Dinamis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (493.975 KB)

Abstract

Saat ini, kebutuhan akan energi, terutama energi listrik semakin tinggi akibat pertambahan populasi manusia. Energi surya merupakan energi yang memiliki potensi tinggi namun belum dimaksimalkan penggunaannya dalam kehidupan sehari-hari. Intensitasi radiasi surya bergantung pada beberapa hal, seperti iklim, posisi bujur suatu lokasi, tanggal dan juga waktu. Visual Basic 6.0(VB) dapat digunakan untuk pembuatan simulasi perhitungan intensitas radiasi pada suatu permukaan. Pada skripsi ini, pembuatan simulasi perhitungan intensitas radiasi didasarkan pada hasil pengukuran dengan menggunakan alat ukur data hobo station pada bulan Desember 2012, setelah simulasi selesai, dilakukan perbandingan data hasil pengukuran dengan hasil simulasi teoritis dan ditunjukkan dalam bentuk grafik yang dibuat dengan perangkat lunak yang sama. Hasil simulasi menunjukkan bahwa persen galat hanya sekitar 14%, sehingga simulasi yang dibuat telah dapat digunakan.   Kata Kunci : Intensitas radiasi surya, Visual Basic 6.0, alat ukur data hobo station
PENGUJIAN KEMAMPUAN ADSORPSI DARI ADSORBEN ALUMINA AKTIF UNTUK MESIN PENDINGIN TENAGA SURYA ABDI Z.A M; HIMSAR AMBARITA; TULUS B SITORUS; FAREL H NAPITUPULU; ANDIANTO P
Jurnal Dinamis Vol 6, No 1 (2018): DINAMIS
Publisher : Jurnal Dinamis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (629.518 KB)

Abstract

Akhir-akhir ini mesin pendingin siklus adsorpsi semakin banyak diteliti oleh para ahli karena disamping ekonomis juga ramah lingkungan dan menggunakan energy terbarukan yaitu energi surya. Agar proses adsorpsi dan desorpsi mesin pendingin adsorpsi dapat berjalan dengan baik perlu diketahui jumlah perbandingan yang ideal antara adsorben dengan refrigeran yang digunakan. Disini untuk mencari perbandingan antara absorben alumina aktif menggunakan baut maupun tidak menggunakan baut. Data tersebut dapat dicari menggunakan alat penguji kapasitas adsorpsi. Alat penguji  kapasitas adsorpsi yang digunakan dilengkapi dengan lampu halogen 1000 W sebagai sumber panas. Adsorber pada alat penguji ini terbuat dari bahan stainless steel yang bertujuan agar tahan terhadap korosi akibat dari variasi refrigeran yang digunakan. Alumina aktif yang digunakan sebagai adsorben sebanyak 1 kg. Sedangkan variasi refrigeran yang digunakan yaitu amonia. Kapasitas amonia yang dapat diadsorpsi dan didesorpsi oleh adsorben alumina aktif mengunakan baut diisolasi adalah sebanyak 300 mL. Sedangkan kapasitas amonia yang dapat diadsorpsi dan didesorpsi oleh adsorben alumina aktif tidak menggunakan baut diisolasi adalah sebanyak 220 mL.
ANALISA SALURAN PENGERING BERBENTUK SILINDER PADA MESIN PENGERING PAKAN TERNAK SISTEM POMPA KALOR DUNAN GINTING; HIMSAR AMBARITA; FAREL H NAPITUPULU; ACHMAD HUSEIN SIREGAR; ANDIANTO P
Jurnal Dinamis Vol 6, No 2 (2018): DINAMIS
Publisher : Jurnal Dinamis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (551.137 KB)

Abstract

Analisa ini bertujuan untuk mengatasi masalah yang dihadapai para produsen pakan ternak  untuk mengeringkan pakan ternak yang sudah dicacah  dalam keadaan lembab menjadi kering agar tahan lebih lama.Adapun yang menjadi tujuan pada penelitian ini adalah untuk mengetahui nilai rasio humiditas udara yang terdapat pada saluran pengering, untuk mengetahui laju perpindahan panas disaluran pengering, untuk mengetahui laju pengeringan pakan ternak, untuk mengetahui laju ekstraksi penguapan spesifik, untuk mengetahui kebutuhan energi spesifik, dan untuk mengetahui biaya yang dibutuhkan saat proses pengeringan.Sebelum pengujian dilakukan terlebih dahulu disiapkan alat dan bahan pengujian ,kemudian pakan ternak ditimbang hingga massanya 1000 gram.Pakan ternak tersebut dijatuhkan dari masuk saluran menuju keluar saluran dan ditimbang pengurangan massa yang terjadi .Hasil analisa diperoleh bahwa nilai rata –rata rasio humiditas pada masuk saluran sebesar 22,04 g/kg dan pada keluar saluran sebesar 21,84 g/kg . Nilai laju perpindahan panas pada saluran pengering adalah 155,76 W dan nilai koefisien geseknya sebesar 23,1887. Nilai laju pengeringan pakan ternak  pada saluran pengering adalah 0.1374 kg/jam.Nilai laju ekstraksi air spesifik adalah 0.096 kg/kWh. Konsumsi energi spesifik untuk adalah 10,407 kWh/kg.Biaya yang dibutuhkan untuk proses pengeringan adalah Rp 10.053,71,- per kilogram.
UJI PERFORMANSI PENGARUH VARIASI HEAD VORTEX TERHADAP PRESTASI TURBIN VORTEX Dedy A. Girsang; Syahril Gultom; Andianto P; Mahadi .; Pramio G. Sembiring
Jurnal Dinamis Vol 6, No 3 (2018): DINAMIS
Publisher : Jurnal Dinamis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (311.593 KB)

Abstract

Pembangkit listrik tenaga air saat ini menjadi salah satu pilihan dalam memanfaatkan sumber energi terbarukan. Namun pemanfaatan yang ada masih menggunakan teknologi yang sedehana. Salah satu contoh dalam bidang teknik mesin terutama dalam bidang konversi energi dan pemanfaatan alam sebagai sumber energi. Diantaranya adalah pemanfaatan air yang bisa digunakan untuk menghasilkan tenaga listrik. Seorang Peneliti dari Jerman Viktor Schauberger mengembangkan teknologi aliran vortex (pusaran) untuk diterapkan pada pemodelan turbin air. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh luas saluran buang, luas sudu dan ketinggian head. Adapun manfaat dari penelitian ini adalah mengidentifikasi  karakteristik aliran vortex di dalam vortex basin dan potensi pemanfaatannya pada aliran sungai untuk menghasilkan daya listrik.Dari penelitian ini didapatkan efisiensi sebesar 75 % dengan tinggi air jatuh 0,6 m.Turbin pusaran air (vortex) ini dioperasikan pada daerah yang memiliki head yang rendah. Aliran air yang digunakan berasal dari bak penampungan di alirkan melalui saluran air (talang) kapasitas aliran (debit) air yang digunakan dapat diatur melalui sebuah katup pengatur (gate valve) sesuai kebutuhan. Aliran air yang mengalir melalui talang memiliki energi kinetik sehingga akan membentuk pusaran yang akan menggerakkan sudu turbin vortex sebagai energi input.Efisiensi daya turbin tertinggi pada ketinggian 7 cm pada A1 sebesar 63,412 %. Sementara itu daya poros tertinggi berada pada ketinggian 35 pada A1 sebesar 6,45574 watt..
RANCANG BANGUN KONDENSOR UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1PK Ricardo N; Himsar Ambarita; M. Sabri; Andianto P; Zulkifli L; Syahril Gultom; Mahadi .
Jurnal Dinamis Vol 4, No 2 (2016): DINAMIS
Publisher : Jurnal Dinamis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (421.071 KB)

Abstract

Perancangan ini bertujuan untuk mengatasi masalah yang dihadapai usaha loundry  pada penyediaan mesin untuk pencuci dan pengering yang dapat bekerja cepat. Oleh sebab itu dilakukan perancangan yang bertujuan untuk menghasilkan suatu unit mesin pengering pakaian portable dengan menggunankan AC rumah yang berorientasikan pada upaya efisiensi energi listrik yang dapat diaplikasikan pada skala kecil dan besar . Perancangan model fisik semua komponen pada unit mesin pengering pakaian ini didasarkan pada hasil perhitungan teoritis dan Pompa kalor yang digunakan beroperasi menggunakan siklus kompresi uap menjadi batasan masalahnya. Manfaat perancangan ini adalah untuk memenuhi kebutuhan pengeringan pakaian pada sektor rumah tangga,  khususnya usaha laundry di Indonesia. Metode yang digunakan untuk mencapai tujuan adalah melalui perhitungan termodinamika dan perhitungan kondensor dengan refrigerant yang dipakai R-22.  Kesimpulan perancangan ini diperoleh Koefisien performansi (COP) dan mendapatkan hasil beban kondensor pada saat superheated dan pada saat kondensasi, selisih temperatur rata rata logaritmik  ( LMTD) dan panjang pipa kondensor. Koefisien Performansi yang tinggi sangat diharapkan karena hal itu menunjukkan bahwa sejumlah kerja tertentu refrigerasi hanya memerlukan sejumlah kecil kerja dalam proses pengeringan. Kata kunci : potable,refrigeran, HCFC-22, Coefficient of Performance (COP)
ANALISA MESIN PENDINGIN ADSORPSI DENGAN MENGGUNAKAN TENAGA MATAHARI M. Darwis Rambe; Tulus B. Sitorus; Himsar Ambarita; Farel H. Napitupulu; Andianto P
DINAMIS Vol. 6 No. 4 (2018): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1257.965 KB) | DOI: 10.32734/dinamis.v6i4.7179

Abstract

Penggunaan energi besar – besaran saat ini telah membuat membuat manusia mengalami krisis energi. Untuk mengatasi krisis energi di masa depan beberapa alternatif sumber energi mulai dikembangkan, salah satunya ialah energi matahari. Energi matahari biasa digunakan sebagai penerang dan sumber panas bagi kehidupan sehari - hari namun ternyata energi matahari dapat dikembangkan menjadi sumber energi lainnya misalnya untuk pendingin. Mesin pendingin siklus adsorpsi ini digerakkan oleh tenaga matahari dan tidak menggunakan energi mekanik sama sekali. Mesin pendingin siklus adsorpsi memiliki 3 komponen utama yaitu kolektor, kondensor, dan evaporator. Ketiga komponen utama alat ini terbuat dari bahan stainless steel yang bertujuan agar tahan terhadap korosi akibat dari refrigeran yang digunakan. Tujuan dari peneltian ini untuk mengetahui temperatur maksimum pada kolektor dan temperatur minimum pada air yang di dinginkan dan mengetahui laju perpindahan panas dari kolektor, kondensor, dan evaporator. Prosedur pengujian dengan memanaskan kolektor surya (desorpsi) dari pukul 08.00 WIB - 17.00 WIB, sedangkan proses pendinginan alamiah (adsorpsi) berlangsung dari pukul 17.00 WIB – 08.00 WIB. Pada penelitian ini menggunakan pasangan Alumina aktif moleculer seave 13X sebagai adsorben sebanyak 7 Kg dan methanol sebagai refrigerant sebanyak 4 L. Dari hasil pengujian dan perhitungan yang telah dilakukan didapat bahwa temperatur maksimum pada kolektor 102 oC dan temperatur minimum air 18,40 oC. Efisiensi kolektor tertinggi pada hasil pembahasan adalah 52 %.