Sri Sulandari
Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Responses of Tomatoes Grafting Using Variation of Rootstock against Virus Infection and Tomato Yields Tri Retno Widyastuti; Sri Sulandari; Sedyo Hartono; Triwidodo Arwiyanto
Jurnal Perlindungan Tanaman Indonesia Vol 24, No 1 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jpti.31056

Abstract

Grafting methods on tomato have been done to reduce the infection rate of various pathogens. Begomovirus and Crinivirus are important viruses in tomato plants. The research aimed to determine the resistance response of tomato plants to viral infection, and tomato production. Field research was conducted in Harjobinangun, Pakem, Sleman, Yogyakarta in the endemic area of the viral diseases transmitted by Bemisia tabaci. This experiment used a Completely Randomized Design non-factorial with “Servo” as scion and “Amelia”, “H-7996”, “Mawar” as rootstock. The disease development, presence of viral diseases, and tomato yields were observed. PCR detection using Krusty & Hommr primer successfully amplified Begomovirus DNA bands with an approximate size of 580 bp in tomato plant with interveinal chlorosis, curling, thick, rigid, and stunt symptoms. Chlorotic spots and yellowing symptoms successfully amplified using ToCV-CF/ToCV-CR specific primer for the amplification of Tomato chlorosis virus with DNA band approximately size of 360 bp, whereas using TICV-CF/TICV-CR specific primer could not amplify the virus cDNA. The leaves roll upward with purple interveinal symptoms that were not infected by both viruses. Both viral infections affected the quality of the fruit which indicated by a higher number of abnormal fruits. “Servo” grafted onto “Amelia” and non-grafted Servo were tolerant to viral infection, “Servo” grafted onto “H-7996” or to “Mawar variety were susceptible to viral infection, self-grafted Servo were very susceptible to viral infection. 
Molecular Identification of Begomovirus Infecting Angled Luffa Alvina Clara Giovanni; Sedyo Hartono; Sri Sulandari; Susamto Somowiyarjo
Jurnal Perlindungan Tanaman Indonesia Vol 24, No 2 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jpti.31073

Abstract

Begomovirus was reported as one of the most aggressive and destructive viruses on several commercial crops, including cucurbits in Indonesia. Plants that infected with Begomovirus show the mosaic symptom on the leaves, change in leaf shape, stunts, change in color and shape of fruit. It was recently observed in cultivated angled luffa [Luffa acutangula (L.) Roxb] around Yogyakarta and Central Java. The aim of this research was to identify the virus by using Polymerase chain reaction (PCR). The result of Begomovirus amplification from the total DNA samples amplification using primer Krusty-Homer showed that DNA of Begomovirus from angled luffa was amplified at ~580bp. The DNA sequencing of angled luffa’s leaf isolate GD1 had 97.8% homology with SCLV-China isolate MC1. However, amplification of DNA seed samples using the same primer showed negative result. It was concluded that Begomovirus was not a seed borne virus. This is the first molecular report on the occurence of Begomovirus in angled luffa in Yogyakarta.
Detection and Analysis of Protein Profile on Rice Infected by Stunting Virus with Different Severity on Ciherang and Situ Bagendit Varieties Selvi Helina; Sri Sulandari; Sedyo Hartono; Y. Andi Trisyono
Jurnal Perlindungan Tanaman Indonesia Vol 23, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jpti.36549

Abstract

Rice stunt virus is one of the limiting factors in the decline of rice production in Indonesia. The virus consists of rice grassy stunt virus (RGSV) and rice ragged stunt virus (RRSV) that is transmitted by brown planthopper (WBC) in a persistent propagative manner. This study aimed to determine the presence of rice stunt virus in Bantul, Yogyakarta through fast detection using RT-PCR. It also aimed to learn the pattern of total protein profile of healthy and infected rice plants by the virus on different severity level in the field. The results showed that rice varieties of Ciherang and Situ Bagendit in Bantul were infected with RGSV and RRSV. They were classified as mild, moderate, severe, and failure in severity level. Homology analysis using BioEdit showed that the nucleotide sequence of RGSV in Bantul isolate had the highest percentage of nucleic acids similarity with Klaten isolate (98.1%). Meanwhile, RRSV of Bantul isolate had the highest percentage of nucleic acids similarity to Philipines isolate (99.5%). Analysis of protein profiles using SDS-PAGE showed a pattern of protein profiles formed on rice infected with the virus at different severity levels which was not found in healthy rice. These proteins presumably were nonstructural p5 and nucleocapsid protein (NCP) of RGSV with a molecular weight of ~22 and 34-35 kDa; and viral spike protein and protein capsid (S8) of RRSV with MW ~39 and ~43 kDa.