Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Marine Engineering Innovation and Research

Analysis of FSW and TIG Aluminium 5052 Welded Joint Strength Due to The Effect of Working Temperature Hartono Yudo; Razin Hilmy Baihaqi; Untung Budiarto
International Journal of Marine Engineering Innovation and Research Vol 7, No 3 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.917 KB) | DOI: 10.12962/j25481479.v7i3.13353

Abstract

Aluminium 5052 on ships can be used in LNG tanks, heat exchangers, bulkheads, and superstructures. Its characteristics that can be used in various types of construction in ships cause aluminium 5052 to meet various temperature conditions. The purpose of this research is to find out the strength of the FSW and TIG aluminium 5052 welded joints due to the effect of working temperature. The methods used are impact test and bending test of aluminium 5052 specimens immersed in liquid nitrogen at -1600C and heated in oven at 1660C. The average impact value of raw materials, FSW specimens, and TIG specimens immersed in liquid nitrogen at -1600C are 1.22 J/mm2, 0.2195 J/mm2, and 0.0663 J/mm2, respectively. The average impact value of raw materials, FSW specimens, and TIG specimens heated in an oven at 1660C are 1.3403 J/mm2, 0.1395 J/mm2, and 0.0870 J/mm2, respectively. The average bending stress of  raw materials, FSW specimens, and TIG specimens immersed in liquid nitrogen at -1600C are 394.70 MPa, 85.82 MPa, and 299.49 MPa, respectively. The average bending stress of raw materials, FSW specimens, and TIG specimens heated in an oven at 1660C are 400.45 MPa, 148.58 MPa, and 318.55 MPa, respectively. Weld discontinuity observations shows that all raw material specimens do not have open discontinuities exceeding 3 mm, all FSW specimens have open discontinuities exceeding 3 mm, and TIG specimens shows varied results. The conclusion of this study shows that aluminium 5052 is a material that is resistant to temperature changes and is able to maintain its strength at various temperature conditions because aluminium is an FCC (Face Centered Cubic) material.
Strength Analysis of Towing Hook Support Structure on TB. Khatulistiwa 01 Philipus Valentino; Hartono Yudo; Ahmad F. Zakki
International Journal of Marine Engineering Innovation and Research Vol 7, No 4 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j25481479.v7i4.14734

Abstract

Towing hook is one of the important components of a tugboat. Its function is to tow various types of ships, namely containers, tanker ships, and even barges. This activity affects the components to undergo failure and crack, especially the support structure of the hook. Earlier research has analyzed various types of stress characteristics, namely fatigue crack, maximum stress, and maximum factor of safety aimed both at the support structure and the whole profile of the tug. The research aim is to determine the value of stress in the support structure and the safety factor brought by tensile load transferred from the towing hook. The analysis is done using finite element method in Altair Hyper Works 2019. Structural strength of the towing hook support structure is analyzed in 2 loading conditions, namely lightweight barge and full load barge. Two different approaches are used for comparison. The first approach is using barge resistance, and the second is by utilizing maximum tug horse-power to speed ratio. Maximum stress acquired in both loading conditions and both approaches is 118.64 MPa; 121.80 MPa; 230.90 MPa; 329.86 MPa respectively. The safety factor is measured using 2 criteria, BKI permissible stress criterion and BKI Material Strength criterion. Results of safety factors based on BKI permissible stress are 1.644; 1.601; 0.845; and 0.591. According to BKI Material Strength, the safety factors on both loading conditions are 3.371; 3.284; 1.732; and 1.212.