Hsuan-Teh Hu
National Cheng Kung University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Seismic Vulnerability Assessment Using Rapid Visual Screening: Case Study of Educational Facility Buildings of Jenderal Soedirman University, Indonesia Yanuar Haryanto; Hsuan-Teh Hu; Ay Lie Han; Banu Ardi Hidayat; Arnie Widyaningrum; Prisca Evelyn Yulianita
Civil Engineering Dimension Vol. 22 No. 1 (2020): MARCH 2020
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1152.062 KB) | DOI: 10.9744/ced.22.1.13-21

Abstract

Earthquakes are natural phenomena occurring in various parts of the globe. Severe earthquakes caused substantial loss of life and property when nearly populated districts. Although some progress has been made in the area of seismic prediction, earthquakes in time, magnitude or location can not be estimated correctly. The primary method of reducing casualties is therefore to build seismic resistant structures. Current earthquakes show that the old houses, which are not intended to withstand earthquakes, have been harmed rather than the structures intended according to seismic regulations. Many current structures in Indonesia were intended only without seismic provisions to withstand the gravity loads. There is a need to study these buildings' vulnerability in order to prevent a severe danger. A Rapid Visual Screening (RVS) technique is conducted in this study to determine a Final Level 1 Score, SL1, for Jenderal Soedirman University, Indonesia’s educational facility buildings. In nine constructions situated in Purwokerto and Purbalingga, the method was implemented. Moreover, the final SL1 score is an estimate of the collapse probability if an earthquake occurs with ground motions called the maximum considered earthquake targeted risk, MCER. These score estimates are based on restricted observed and analytical information, thus the probability of collapse is therefore an approximation.
Seismic Performance Evaluation of Wharf Based on ASCE 61-14 Kukuh Adhi Kafie; Andreas Triwiyono; Iman Satyarno; Hsuan-Teh Hu
Journal of the Civil Engineering Forum Vol. 9 No. 3 (September 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.6749

Abstract

The adequacy of the structural performance of a wharf in withstanding seismic loads is of paramount importance. Therefore, this research aims to conduct an accurate pushover analysis on the adequacy of a wharf located in North Sulawesi, Indonesia. The study provides a comprehensive overview of the seismic performance of the wharf by examining displacement and strain parameters of its plastic hinge components under various loading conditions. To simulate accidental torsion, the wharf structure was analyzed by introducing variations in the eccentricity offset of the lateral pushover load of -5%, 0%, and 5% from the center of mass. The analysis of the torsion behavior involved a comprehensive examination of four control points located at each corner of the wharf plan. Additionally, the investigation took into account, the crucial aspect of soil-structure interaction by considering the equivalent fixity depth of the pile, which was used to evaluate the fixity length of the structure. In order to determine the target displacement of the wharf, analysis was performed in accordance with the established methodologies outlined in FEMA 356. It is also important to note that the seismic performance of the wharf was evaluated based on acceptance criteria in the form of strain limits imposed on various components, including concrete elements, reinforcing steel, and steel pipes, as prescribed by ASCE 61-14. In this study, a total of 30 models were examined, and the obtained results showed that the structure exhibited controlled and repairable damage even when subjected to a 475-year earthquake return period (CLE: Contingency Level Earthquake). Following this, the analysis of variations in displacement control point served to determine the inherent torsion exhibited by the structure, and the introduction of different lateral load eccentricity offsets and variations in pushover loading direction were found to contribute to the increased displacement and strain in the plastic hinge components.