Narsito Narsito
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21 Yogyakarta 55281

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Adsorption of Ca(II), Mg(II), Zn(II), and Cd(II) on Chitosan Membrane Blended with Rice Hull Ash Silica and Polyethylene Glycol F. Widhi Mahatmanti; Nuryono Nuryono; Narsito Narsito
Indonesian Journal of Chemistry Vol 16, No 1 (2016)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (379.772 KB) | DOI: 10.22146/ijc.21176

Abstract

In this research, chitosan based membrane blended with rice hull ash (RHA) silica and polyethylene glycol (PEG) has been applied as adsorbent of Ca(II), Mg(II), Zn(II) and Cd(II) in an aqueous solution. Membrane was synthesized by blending RHA silica and polyethylene glycol into chitosan. Silica and polyethylene glycol blended into the chitosan to improve the mechanical properties and the membrane porous. The membrane was characterized using Fourier Transform infrared (FTIR) spectroscopy, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and swelling degree analyzer. Adsorption of metal ions investigated was conducted in a batch system with variation of pH, initial ion concentration and contact time. Thermodynamics and kinetics of adsorption were evaluated based on the adsorption data at initial metal ion concentration and contact time variations, respectively. Results showed that the optimum condition of adsorption was at pH 9.0 for Ca(II), 6.0 for both Mg(II) and Zn(II) and 5.5 for Cd(II), and contact time of 24 h for all ions investigated. Kinetics of all investigated metal ion adsorption followed a kinetic model of pseudo-second-order. Adsorption of Ca(II) and Mg(II) on the membrane fitted to Freundlich model with the affinity of 1.266 and 1.099, respectively; and Zn(II) and Cd(II) fitted to Langmuir one with the capacity of 182 and 106 µmol/g, respectively.
Retracted-Enhanced X-Ray Absorption Property of Gold-Doped Single Wall Carbon Nanotube Alimin Alimin; Narsito Narsito; Indriana Kartini; Sri Juari Santosa
Indonesian Journal of Chemistry Vol 15, No 3 (2015)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.573 KB) | DOI: 10.22146/ijc.21187

Abstract

Enhanced X-ray absorption property of single wall carbon nanotube (SWCNT) through gold (Au) doping (Au@SWCNT) has been studied. Mass attenuation coefficient of SWCNT increased 5.2-fold after Au doping treatment. The use of ethanol in the liquid phase adsorption could produce Au nanoparticles as confirmed by the X-ray Diffraction (XRD) patterns. The possibility of gold nanoparticles encapsulated in the internal tube space of SWCNT was observed by transmission electron microscope technique. A significant decrease of nitrogen uptakes and upshifts of Radial Breathing Mode (RBM) of Au@SWCNT specimen suggest that the nanoparticles might be encapsulated in the internal tube spaces of the nanotube. In addition, a decrease intensity of XRD pattern of Au@SWCNT at around 2θ ≈ 2.6° supports the suggestion that Au nanoparticles are really encapsulated into SWCNT.
Cadmium Adsorption on Chitosan/Chlorella Biomass Sorbent Prepared by Ionic-Imprinting Technique Anis Shofiyani; Narsito Narsito; Sri Juari Santosa; Sri Noegrohati; Titin Anita Zahara; Endah Sayekti
Indonesian Journal of Chemistry Vol 15, No 2 (2015)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (390.111 KB) | DOI: 10.22146/ijc.21210

Abstract

Ionic-Imprinted Chitosan/Chlorella biomass sorbent (IICCb) has been synthesized for selective adsorption of Cd(II) adsorption. IICCb was prepared by coating Cd(II)-complexed-chitosan hydrogel on the biomass surface followed by cross-linking procedure. Cd(II)-imprinting ions were then eluted using Na2EDTA solution to provide a specific template for binding sites of Cd(II). Batch adsorption was carried out as function of initial pH, contact time, and initial concentration of the Cd(II) solution. Result showed that the optimum adsorption of Cd(II) was found at pH 4-6. Study of pseudo-second order kinetic showed that the adsorption of Cd(II) on IICCb went faster than that on Ionic-Imprinted Chitosan (IIC) or Non-Imprinted Ionic Chitosan/Chlorella sorbent (NIICCb). The maximum Cd(II) adsorption capacity as obtained from Langmuir adsorption isotherm was found to be 53.76 mg/g on IICCb, that was comparatively higher than that on IIC (44.44 mg/g) or on NIICCb (51.02 mg/g) adsorbent.