Claim Missing Document
Check
Articles

Found 3 Documents
Search

IDENTIFIKASI GALUR-GALUR PADI MUTANINSERSI TOLERAN DAN RENTAN CEKAMAN SALINITAS BERDASARKAN KARAKTER MULTIVARIAT PERTUMBUHAN DAN BIOKIMIA PADA FASE VEGETATIF Situmorang, Apriadi; Zannati, Anky; Widyajayantie, Dwi; Nugroho, Satya
BERITA BIOLOGI Vol 10, No 4 (2011)
Publisher : Research Center for Biology-Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (538.654 KB) | DOI: 10.14203/beritabiologi.v10i4.765

Abstract

Growth and biochemical characters of thirty-three Nipponbare-based rice mutant lines independently harboring activation-tag in salt stress condition were investigated. Rice cv Nipponbare wild type, IR29 and Pokkali were used as isogenic, susceptible, and tolerant cultivars, respectively. Plants were grown in Yoshida nutrient solution containing NaCI (6 g/1) as the stress treatment and in Yoshida nutrient solution without NaCI as the control. Evaluation of salt tolerance was conducted at 21 days after salinization.The results showed that there was a significant difference in growth characters among genotypes in reduction of the plant height,root length, shoot fresh weight, root fresh weight, shoot dry weight, as well as in the root dry weight. Biochemical characters of the genotypes also showed significant difference in their reduction of chlorophyll-a and chlorophyll-b concentrations,total carotenoids and proline accumulation. Based on multivariate growth and biochemical characters,T3.PMO.VI.63.5a.30.9,T3.PMO.VI.30.1a.21.1, T3.PMO.V1.63.5a.33.7F3.PUR.IX.49.1d.l.6.5,T3.PMO.VI.81.3a.4.4, F3.PUR.IX.49.1d.l.6.5,and F3.PUR.VIII.5.1f.l.4.8 were assumed as potential salt-tolerant lines, respectively, while mutant lines T3.PMO.VI.30.1a.l07.7,T3.PMO.VI.63.5a.20.6,T3.PMO.III.4.4c.7.2,andT3.PMO.VI.30.1a.51.1 were assumed as salt-susceptible lines respectively.
Phenotypic Screening of Ds transposon and Activation-tag Insertional Mutant Rice Population for Drought and Salinity Tolerant Related Traits Nugroho, Satya; Zannati, Anky; Situmorang, Apriadi; Windiastri, Vincentia Esti; Widyajayantie, Dwi; Pantouw, Carla F.; Astuti, Dwi; Indrayani, Sri; Rahmawati, Syamsidah; Mulyaningsih, Enung Sri; Santoso, Tri Joko; Trijatmiko, Kurniawan Rudi
ANNALES BOGORIENSES Vol 15, No 1 (2011): Annales Bogorienses
Publisher : Research Center for Biotechnology - Indonesian Institute of Sciences (LIPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.1234/56

Abstract

The studies of rice genes through functional genomics are greatly facilitated by the availability of the complete genome sequences, including the complete physical map of the japonica rice cv. nipponbare. Using the Ac and Ds transposon, that are capable of transposition in various heterologous plants including the monocotyledon rice,  combined with the enhancer element for generating activation taged lines, it is possible to discover and isolate functional genes involved in various important agronomical traits; such as those involved in abiotic stress tolerance (drought, high salt) and biotic stresses diseases and pests. We have developed 1,785 first (T0) generation of mutant nipponbare rice by transposons Ac/Ds insertions containing activation-tag, generated by transformation using Agrobacterium-mediated method. Currently, we have generated approximately 1,000 stable lines with transposon Ds and activation-tag insertion ready for screening. Efficient screening methods for mutant Nipponbare rice lines have been established for agronomically important mutant traits. Among the new phenotypes related to important agronomical traits observed were drought and salt tolerant or sensitive, stunted and robust growth, variable root penetration and other interesting traits such as reduced tillering, rolled leaf and thin tiller.   Keywords: rice, insertion mutant, gene discovery, drought, salinity
Pemanfaatan Teknologi Droplet Digital PCR (ddPCR) dalam Kegiatan Analisis Molekuler Tanaman Nugroho, Kristianto; Widyajayantie, Dwi; Ishthifaiyyah, Sayyidah Afridatul; Apriliani, Elisa
JURNAL BIOS LOGOS Vol 11, No 1 (2021): JURNAL BIOS LOGOS
Publisher : Universitas Sam Ratulangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35799/jbl.11.1.2021.31101

Abstract

(Article History: Received 23 October 2020; Revised 9 January 2021; Accepted 18 January 2021) ABSTRAKSelama beberapa dekade terakhir, teknik PCR memberikan manfaat yang begitu besar dalam kegiatan penelitian di bidang biologi molekuler. Digital droplet PCR (ddPCR) merupakan salah satu teknologi PCR terbaru yang diklaim memiliki keunggulan dibanding teknik qPCR. Prinsip kerja teknik ini yaitu membagi sampel menjadi molekul-molekul kecil yang dipisahkan oleh emulsi minyak, air, dan senyawa penstabil sehingga membentuk droplets. Teknik ini memiliki kelebihan mampu melakukan kuantifikasi absolut maupun relatif pada DNA dengan konsentrasi sangat rendah, tidak memerlukan kurva standar, serta tidak sensitif terhadap kehadiran senyawa inhibitor. Teknik ini telah diaplikasikan pada kegiatan analisis molekuler tanaman di antaranya kegiatan pengukuran konsentrasi DNA dengan sangat akurat, deteksi kehadiran patogen pada jaringan tanaman, dan estimasi jumlah salinan T-DNA pada proses transformasi genetik.Kata kunci: PCR; droplet digital PCR; DNA; biologi molekuler; alat deteksi ABSTRACTOver the past decades, PCR technique has provided enormous benefits in molecular biology research activities. Digital droplet PCR (ddPCR) is one of the latest PCR technologies that is claimed to have advantages over the qPCR technique. The working principle of this technique is to divide the sample into small molecules, which separated by emulsions of oil, water, and stabilizing compounds to form droplets. This technique has the advantage of being able to perform absolute and relative quantification with very low DNA concentrations, does not require a standard curve, and less sensitive to the presence of inhibitor compounds. This technique has been applied to a number of plant molecular analysis, such as for measuring DNA concentrations very accurately, detecting the presence of pathogens in plant tissue, and estimating the copy number of T-DNA in the genetic transformation process.Keywords: PCR; droplet digital PCR; DNA; molecular biology; diagnostic tool.