Kamarza Mulia, Kamarza
Department Of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Wax Precipitation in Crude Oil by Coutinho Model Based on Conventional Gas Chromatography Data Kurniawan, Muh; Adiwar, Adiwar; Mulia, Kamarza; Anwar, Chairil
Scientific Contributions Oil and Gas Vol 36, No 2 (2013)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.36.2.764

Abstract

Wax precipitation in crude oils can produce problems in oil production and transportation operations. Prediction is the key of avoidance or remediation of the wax problem of flow assurance. Among the wax prediction thermodynamic model, Coutinho model can be run using limited laboratory data, but the result is comparably accurate. The model requires n-paraffin distribution, which commonly determined by high-temperature gas chromatography (HTGC) analysis. However, only few laboratories could perform the HTGC. Lemigas has abundant database of crude oil with conventional gas chromatography data. An extended n-paraffin distribution was calculated based on the conventional GC data by performing extrapolation and normalization to total wax content. The n-paraffin distribution was applied in Coutinho model to predict wax precipitation of a crude oil sample. The WAT obtained from the model deviated only 2°C from DSC data. The result was also valid to DSC data in term of precipitated wax amount along temperature range.
Enhanced Drug Release of Poly(lactic-co-glycolic Acid) Nanoparticles Modified with Hydrophilic Polymers: Chitosan and Carboxymethyl Chitosan Diah Lestari; Noverra Mardhatillah Nizardo; Kamarza Mulia
Indonesian Journal of Chemistry Vol 22, No 5 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73673

Abstract

The biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) is a biomaterial with great potential as a drug delivery carrier and a tissue engineering scaffold. Using diclofenac sodium (DS) as a drug model, PLGA/DS nanoparticles were synthesized by modification with two hydrophilic polymers: chitosan and carboxymethyl chitosan (CMCh). The introduction of chitosan and CMCh enhances the efficiency encapsulation, capacity loading of the nanoparticles, and DS release at pH 6.8 and minimum release at pH 1.2. Synthesis of nanoparticles was carried out using a double emulsion (water/oil/water) solvent evaporation method. Characterization using an Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrophotometer indicates that the interaction between DS and polymer on nanoparticles is non-covalent with a spherical shape based on a transmission electron microscope (TEM) and scanning electron microscope (SEM) characterization. From the various formulation studied, nanoparticles with the ratio chitosan-PLGA-DS and CMCh-PLGA-DS of 2:20:4 proved to be the optimum model carrier with the required release profile and could be the alternative for DS delivery systems.