Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JTT (Jurnal Teknologi Terapan)

INVESTIGASI EKSPERIMENTAL PERFORMA SISTEM PENDINGIN MULTI-TERMOELEKTRIK DENGAN KONFIGURASI TERMAL SERI DAN PARALEL Bowo Yuli Prasetyo; Apip Badarudin; A.P. Edi Sukamto; Rizki Muliawan
Jurnal Teknologi Terapan Vol 8, No 2 (2022): Jurnal Teknologi Terapan
Publisher : P3M Politeknik Negeri Indramayu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31884/jtt.v8i2.427

Abstract

Thermoelectrics can convert electrical energy to thermal energy. The generated thermal energy can be used in various cooling systems (TEC) applications. Improvement of TEC performance influenced by hot-side heat dissipation method, working fluid, and multi-thermoelectric. This study aims to investigate the relation between multi-thermoelectric configuration and the cooling behaviors. The experiment was conducted on the devices equipped with two modules of TEC arranged in series and parallel with variations of input voltage, working fluid mass flow, and temperature. The result reveals variations in cooling behaviors between the two configurations. Parallel configuration TEC gives the highest cooling capacity with a value of 66.62 W, 100% bigger than the series configuration. Meanwhile, the series configuration provides a delta temperature of 11.03 K, 2% higher than the parallel one. The parallel modules cooling performance is the biggest among the two arrangement, with a value of 2.57, which is 147% higher than series one.
KAJI EKSPERIMENTAL RETROFIT R404A DENGAN REFRIGERAN RAMAH LINGKUNGAN R290 PADA FREEZER Kasni Sumeru; Triaji Pangripto Pramudantoro; Apip Badarudin; Ridwan Nugraha; Luga Martin Simbolon; Mohamad Firdaus bin Sukri
Jurnal Teknologi Terapan Vol 9, No 2 (2023): Jurnal Teknologi Terapan
Publisher : P3M Politeknik Negeri Indramayu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31884/jtt.v9i2.520

Abstract

R404A refrigerant is still widely used as the working fluid in freezers with temperatures below -30°C. However, because of R404A’s high global warming potential (GWP) value, its use as a working fluid should be stopped immediately. One alternative is an environmentally friendly refrigerant, that is R290. In this study, the R404A refrigerant was replaced by R290 in a freezer that can reach -40°C. In the case of replacing a refrigerant with a different type, the reference used is the same charging volume in the system. The filling mass of R290 is the ratio of the density of R404A to R290 at its evaporation temperature, which is -40°C. The amount of R404A’s mass filling is 170 g, while the amount of R290’s mass filling is 62.9 g. Based on a 120-minutes testing, replacing R404A with R290 has resulted in the reduction of power input by 6.0%, as well as in the slight increase of its cooling capacity, which is 2.42%. As a result of the input power decrease and the cooling capacity increase, the COP in the freezer also increased, namely by 8.05%. More importantly, if a leak occurs in the refrigerant, the replacement of R404A with R290 can help reduce gas emissions that contribute to global warming. It is because the GWP value of R404A refrigerant, which is 3922, is replaced by the GWP value of R290 refrigerant, which is only 3.