p-Index From 2019 - 2024
2.092
P-Index
Na'imah Hijriati
Program Studi Matematika, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Lambung Mangkurat, Indonesia

Published : 28 Documents
Claim Missing Document
Articles

## Title

### Found 28 Documents Search

Application of a permutation group on sasirangan pattern Na&#039;imah Hijriati; Dewi Sri Susanti; Raihan Nooriman; Geofani Setiawan
Desimal: Jurnal Matematika Vol 4, No 3 (2021): Desimal: Jurnal Matematika
Publisher : Universitas Islam Negeri Raden Intan Lampung

#### Abstract

A permutation group is a group of all permutations of some set. If the set that forms a permutation group is the n-first of natural number, then a permutation group is called a symmetry group. There is another type of group, i.e., a cyclic group and a dihedral group, and they are a subgroup of a symmetry group by numbering the vertices of the polygon. Sasirangan is the traditional batik from the South Kalimantan. There are 18 traditional patterns. All the patterns make some polygon. Because of this, the purpose of this research is to investigate the type of group that forms the patterns of Sasirangan. First, the authors give the procedure to investigate the patterns of Sasirangan, then use that procedure to the patterns of Sasirangan. The result of this research is the patterns of Sasirangan form cyclic groups C_1  and C_2, and dihedral groups D_2, D_4, D_5 and D_8.
ANALISIS RESPON MAHASISWA TERHADAP PENERAPAN PENDEKATAN ETNOMATEMATIKA (POLA KAIN SASIRANGAN) PADA PEMBELAJARAN STRUKTUR ALJABAR Dewi Sri Susanti; Na&#039;imah Hijriati; Rahmi Hidayati; Raihan Nooriman; Geofani Setiawan
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 11, No 1 (2022)

#### Abstract

Penelitian ini bertujuan untuk mengukur efektivitas pembelajaran aljabar dengan menerapkan model discovery learning dengan pendekatan etnomatematika. Konsep etnomatematika yang dimaksud adalah dengan mengaitkan materi tentang grup dengan pola kain sasirangan yang merupakan kain khas dari Kalimantan Selatan. Respon mahasiswa atas proses pembelajaran tersebut diamati dari persepsi selama pembelajaran berlangsung dan hasil penilaian yang diperoleh setelah pembelajaran. Persepsi mahasiswa dirangkum melalui kuesioner yang didalamnya memuat komponen penilaian untuk dosen pengajar yaitu aspek pedagogis dan profesional, sedangkan tingkat pemahaman mahasiswa diukur melalui butir-butir pertanyaan yang memuat aspek afektif dan kognitif. Aspek psikomotorik dievaluasi melalui penilaian video pembelajaran yang dihasilkan mahasiswa. Efektivitas pembelajaran terukur melalui signifikasi peningkatan nilai ujian sebelum dan setelah metode pengajaran diterapkan. Subyek penelitian ini adalah mahasiswa peserta pembelajaran mata kuliah Struktur Aljabar. Dari hasil penelitian menunjukkan bahwa pelaksanaan pembelajaran mata kuliah Struktur Aljabar dengan pendekatan etnomatematika telah memberikan peningkatan kemampuan mahasiswa yang signifikan baik dari sisi kognitif, afektif dan psikomotorik. Hal ini terukur dari respon mahasiswa dalam angket pembelajaran, bukti penyelesaian tugas video pembelajaran dan hasil nilai yang diperoleh mahasiswa. Penilaian untuk dosen pengajar juga memberikan hasil yang positif dari sisi pedagogis dan sisi profesionalitas.Improving the ability of mathematical understanding can be conduted by building different learning nuances. If so far the learning process has focused more on the teacher/lecturer (teacher center), a solution is needed to improve student understanding, one of which is by applying discovery learning learning techniques, where students can find their own formulas in learning & reasoning. Along with the desire to raise cultural values in the learning process, the ethnomathematical approach to learning is one of the best solutions to motivate students. This method is a collaborative discovery learning model with an ethnomathematical approach. namely the sasirangan cloth. After taking an ethnomathematical approach in the learning process, especially on topic of special groups, students are asked to provide an assessment of the learning process. The implementation of the Algebraic Structure learning course with an ethnomathematical approach has provided a significant increase in student abilities in terms of cognitive, affective and psychomotor. This is measured from student responses in learning questionnaires, evidence of completion of learning video assignments and the test results. Assessment for teaching lecturers also gave positive results from the pedagogical and professional side.
STATISTICAL CONTROL ANALYSIS OF THE STUDENTâ€™S FINAL ASSIGNMENT COMPLETION PERIOD AT THE MATHEMATICS AND NATURAL SCIENCES FACULTY Arika Febriani; Dewi Sri Susanti; Na'imah Hijriati
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 2 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

#### Abstract

The final assignment is one of the requirements to get a bachelorâ€™s degree for college students at the Faculty of Mathematics and Natural Sciences (FMIPA) University of Lambung Mangkurat (ULM). The average period of completion of the final assignment in the year 2015 until 2019 is 8 months, while the determined specification by the guideline is 6 months. The aim of this research is to identify the quality control of the final assignment completion process and whether satisfy the determined specification using statistical quality control. The used data in this research is the studentâ€™s final assignment completion period (variable data) and the nonconforming proportion of data (attribute data). The and control charts are used for variable data and control chart for attribute data and process capability analysis. The result of variable data is that the average period of final assignment completion is statistically in control with a control limit of months. For attribute data concluded that final assignment completion is statistically in control with a big average proportion that is . For the capability analysis process by index and value sequentially is and for the DPU value is . This shows that the completion period of the studentâ€™s final assignment of FMIPA ULM is not capable to fulfill the specified standard of the period.
KOREPRESENTASI KOALJABAR F [G] Na’imah Hijriati; Indah Emilia Wijayanti
Pattimura Proceeding 2021: Prosiding KNM XX
Publisher : Pattimura University

#### Abstract

Abstrak. Diberikan grup berhingga G dan lapangan F . Aljabar grup F [G] merupakan suatu ring sekaligus merupakan ruang vektor atas F . Diketahui, jika ruang vektor V atas F merupakan modul atas aljabar grup F [G] maka selalu dapat dikonstruksi suatu representasi ring F [G] terhadap V , yakni suatu homomorfisma ring dari F [G] ke ring semua tranformasi linear pada V . Lebih lanjut, diketahui juga F [G] dan ring semua transformasi linear pada V merupakan koaljabar atas F . Berdasarkan hal ini, jika suatu ruang vektor atas F merupakan komodul atas F [G] maka muncul permasalahan apakah dapat dikonstruksi suatu homomorfisma koaljabar dari F [G] ke koajabar semua transformasi linear pada ruang vektor tersebut. Oleh karena itu, pada tulisan ini akan diberikan pengkonstruksian homomorfisma koajabar F [G] terhadap suatu ruang vektor atas F . Selanjutnya, homomorfisma koaljabar F [G] disebut korepresentasi koaljabar F [G] terhadap suatu ruang vektor atas F .
IDEAL FUZZY NEAR-RING Saman Abdurrahman; Na&#039;imah Hijriati; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 2 (2012): JURNAL EPSILON VOLUME 6 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

#### Abstract

In this paper will be discussed ideal near-ring, ideal fuzzy near-ring covering the relationship between ideal near-ring and ideal fuzzy near-ring.
GRUP RING Aisjah Juliani Noor; Naimah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 4, No 1 (2010): JURNAL EPSILON VOLUME 4 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

#### Abstract

The RG ring group is the set formed from group G below multiplication operations of finite elements and commutative rings. R with elements unit. If defined the operation of addition and operation of doubling in RG respectively                      i I i i i i I i i i I i a g a g (a b) g and                           i I i g g g j k i I i i i I i i g a b g a b g j k i () for each a g b g RG i I i i i I i i      , then RG is a ring. Based on the definition of RG formed from two structures that have certain properties, then the properties of RG depend on R and G forming them, namely: a. Every element in R is commutative with each element in RG and in unit elements R is a unit element in RG b. Every element in G has a doubling inverse in RG c. RG is commutative if and only if G is commutative d. If S subring of R and H subgroups of G, then SG and RH are subring-subring from RG.
SYARAT PERLU DAN SYARAT CUKUP MATRIKS BERSIH PADA ????????????????(ℤ) Rohmalita Rohmalita; Na&#039;imah Hijriati; Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 8, No 2 (2014): JURNAL EPSILON VOLUME 8 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

#### Abstract

This paper describes the condition of a net matrix at ????????2 (ℤ) and describes the terms and conditions of sufficient net matrix at ????????2 (ℤ). The result of this study is, ???????? is the 1-net matrix if and only if ???????????????????????? (????????) -???? ???????? (????????) = 0 or -2. Then ???????? is the 0-net matrix if and only if ???????? is the unit matrix, or satisfies one of the equations ???????????? -????????????????-???????? + ???????????????? = ± 1, ???????????? -????????????????-???????? + ???????????????? = ± 1, ????-????????????????????2 + ( ????????-????????) ???????????????? + (????) ???? 2+ (????????) ???????? + (???????????? -????????????????-???????? ± 1) ???? = 0. And the requirement of ???????? is sufficient and ???????? is a 0-net matrix ie if ???????? = ????????????????????00????∈????????2 (ℤ) is a 0-net matrix then ???????? is a 0-net matrix.
KONSTRUKSI SEMIGRUP REGULER DENGAN TRANSVERSAL INVERS IDEAL KUASI Thresye Thresye; Na&#039;imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 5, No 1 (2011): JURNAL EPSILON VOLUME 5 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

#### Abstract

A transversal inverse o S of a regular semigrup S is called a quasi ideal transversal inverse or Q-transversal inverse if o o o S SS  S where o S is the quasi ideal of S. Let S is a regular semigrup with transversal invers o S which is the quasi ideal of S. For example  o o oo R  xS: x x  x x and eg  o oo o L  aS: aa  a a, then R and L is an orthodox semigrup with transverse inverse o S which is ideal right of R and is the left ideal of L. Can be constructed regular semigrup with transversal inverse ideal quasi-shaped    o o R L  x, a  R L: x  a .It is connected with a band, then a regular semigrup with transverse inverse ideal quasi-shaped   o o R B  x, e R B: x x  e
IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL Na&#039;imah Hijriati; Saman Abdurrahman; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 2 (2012): JURNAL EPSILON VOLUME 6 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

#### Abstract

Ideal differential is the ideal of differential ring that satisfies if for each a  I, and every   ,  (a)  I, whereas the differential homomorphism is a commutative homomorphism of rings against each derivation. This paper is presented the properties of differential ideal and differential homomorphism.
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN PANAS Andi Tri Wardana; Yuni Yulida; Na’imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 9, No 2 (2015): JURNAL EPSILON VOLUME 9 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

#### Abstract

The differential equation is an equation in which there is a derivative of one or more independent variables. The differential equation can be divided into two groups, Ordinary differential equation and Partial differential equation. One method for solving ordinary differential equations is the Adomian Decomposition Method which is used to facilitate in the solving of ordinary nonlinear differential equations. Adomian decomposition method is a method that can also be used to determine the solution of partial differential equations, one of which can be applied to the heat equation. This study was conducted using literature study. The results of this study show that the solution of the linear heat equation is: 1100 (,) (,) (, 0) (,) (,) nttxxnnnuxtuxtuxLgxtLLuxt∞∞ - ==  == ++ ΣΣ with 10 ( ,) (, 0) (,) tuxtuxLgxt - = + and 1 (,) (,), 1,2,3, ... ntxxnuxtLLuxtn - == and the solution of nonlinear heat equation is: 11000 (,) (,) (, 0) (,) (,) ntxxntnnnnuxtuxtuxLLuxtLAxt∞∞∞ - ===== ++ ΣΣΣ with 0 (,) (, 0) uxtux = and 111 (,) (,) (,), 0,1,2, ... ntxxntnuxtLLuxtLAxtn - + = + =