Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Study on Dielectric Properties of The Cellulose Derivative-NH4Br-Glycerol- Based The Solid Polymer Electrolyte System Rasali, Nur Muhitul Jalilah; Muzakir, Saifful Kamaluddin; Samsudin, Ahmad Salihin
Makara Journal of Technology Vol. 21, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The characterization of biopolymer-based solid polymer electrolytes (SPEs) has been carried out in this present work. Cellulose derivative was chosen due to its superior physical attributes. In this work, NH4Br-doped glycerol plasticized carboxyl methylcellulose-based SPEs were successfully prepared via the solution casting method. The conductivity and dielectric properties of the prepared films were investigated using the impedance analysis which presented ~1.91×10-3 Scm-1 (with addition of 6 wt% of glycerol). In addition, the studied SPE system shows a non-Debye behaviour without a single relaxation time. The findings of the research indicate that the complexes of NH4Br and glycerol in the cellulose derivative influence the ionic conductivity and dielectric properties of the SPE system.
Ionic Conductivity and Electrochemical Properties of Alginate–NN4NO3-Based Biopolymer Electrolytes for EDLC Application Mazuki, Norfatihah binti; Rasali, Nur Muhitul Jalilah; Sahraoui, Bouchta; Samsudin, Ahmad Salihin
Makara Journal of Technology Vol. 24, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In this work, alginate doped with various contents of ammonium nitrate (NH4NO3) as a solid biopolymer electrolyte (SBE) was prepared via casting by using distilled water as a solvent. Impedance studies on alginate–NH4NO3 SBE films were conducted via impedance spectroscopy. The lowest bulk resistance (Rb) showed that the maximum ionic conductivity of the sample containing 25 wt.% NH4NO3 at ambient temperature (303 K) was 5.56 × 10−5 S cm−1. The temperature dependence of ionic conductivity was evaluated, and results confirmed that electrolytes followed an Arrhenius behavior. The highest conducting sample was fabricated into an electrical double-layer capacitor and characterized in terms of its electrochemical properties through cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurement. CV analysis indicated that specific capacitance decreased as the scan rate increased. Conversely, GCD analysis showed that specific capacitance almost remained unchanged for up to 5000 cycles.