Nisa Yulianti Suprahman
Department Of Pharmacy, Faculty Of Science, Institut Teknologi Sumatera, Lampung, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Mannitol Production from Fructose by Using Resting Cells of Methylotrophic Yeasts Nisa Yulianti Suprahman; Khairul Basyar; Herman Suryadi
JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA Vol. 9 No. 3 (2022): JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jfiki.v9i32022.272-278

Abstract

Background: Mannitol is a polyol sugar widely used in pharmaceutical and food industries which can be produced by bioconversion. Using of resting cells and methanol as a carbon source are strategies to increase the efficiency of mannitol production by increasing NAD(P)H needed in the reduction process. Objectives: This research aimed to optimize bioconversion condition by using resting cells of methylotrophic yeasts with methanol and fructose as carbon source and substrate, respectively. Methods:  Several isolates were used including Candida sp, Debaryomyces nepalensis and Debaryomyces hansenii and three species suspected to be yeast isolated from a local paddy field. The methylotrophic characteristic of the yeasts was screened by turbidometry. The optimization of fermentation condition was conducted by varying cultivation time (24-96 hours), resting cell concentration (30-140 mg/mL), fructose concentration (7.5-15%), ammonium sulphate concentration (0.25-0.75%) and aeration condition (50-80%). Quantitative analysis of the mannitol was conducted by HPLC with NH2 column and Refractive Index Detector. Results: D. hansenii showed the highest yield value in mannitol production (23.17%), followed by D. nepalensis, Isolate A and Candida sp. (6.52%, 6.50% and 4.38%, respectively). Variation of bioconversion condition using D. hansenii showed that the highest resting cell concentration (140 mg/mL) incubated for 72 hours, moderate fructose concentration (10%), the highest ammonium sulphate concentration (0.75%) and moderate aeration condition (70%) would result in the highest yield value of mannitol (60%). Conclusion: This finding showed the potency of D. hansenii in mannitol production and gave preliminary information of its optimum fermentation condition.
Bioinformatic and Molecular Docking Study of Zerumbone and Its Derivates against Colorectal Cancer Riri Fauziyya; Winni Nur Auli; Nisa Yulianti Suprahman; Sarmoko Sarmoko; Arif Ashari; Kalista Alsadila; Lanita Agustin; Safia Fazila; Miralda Zahra; Esteria Christina Pane; Sukrasno Sukrasno
Indonesian Journal of Cancer Chemoprevention Vol 14, No 1 (2023)
Publisher : Indonesian Society for Cancer Chemoprevention

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14499/indonesianjcanchemoprev14iss1pp39-48

Abstract

The prevalence of colorectal cancer (CRC) is ranked third among all cancer types in both men and women, highlighting the urgency for drug exploration. Zerumbone and its derivatives have gained attention for their ability to inhibit angiogenesis, invasion, and metastasis and have been tested for their efficacy against various cancer cells. This study aimed to investigate the potential targets and mechanism of action of zerumbone derivatives in colon cancer invasion and migration. Bioinformatic analysis was conducted using STITCH and STRING to identify potential target genes, and molecular docking was used to search for anticancer candidates from 20 zerumbone derivatives. The results revealed that six proteins were targeted by zerumbone derivatives, including XIAPBIR3 (1TFT), AKT1 (3O96), JAK2 (6VGL), HASP90AA (2XJX), MDM2 (4MDN), and XIAPBIR2 (4KJU). Compound 4 was found to have a lower binding energy than zerumbone as well as AZD5363 (pan-Akt inhibitor) when interacting with the protein target AKT1. This makes it the most promising candidate among the zerumbone derivatives for treating colorectal cancer. Further development, such as the addition of an amine functional group, is expected to improve the potency of this molecule through the formation of hydrogen bonds and other interactions with lower bond energy.Keywords: Bioinformatic, molecular docking, zerumbone derivatives, colorectal cancer.