Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analysis of Vibration Characteristics in 17-Inch Aluminum Alloy Wheel Rims Using Finite Element Method Victor Indra Wijaya; Riyan Ariyansah; Delvis Agusman; Rifky; Oktarina Heriyani
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa dan Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6620

Abstract

The wheel rim serves as a component designed to provide stability and necessary support for vehicle tires. The phenomenon of resonance occurring when the external vibration frequency approaches the natural frequency of the structure has the potential to increase vibration amplitude, which can lead to wheel rim damage. This study aims to investigate the shape patterns and natural frequencies of 17-inch aluminum alloy wheel rims, as well as to analyze the maximum total deformation that occurs. The finite element method is employed to simulate the vibration characteristic of 17-inch aluminum alloy wheel rims under various natural frequencies. Modifications to the wheel rim design are made by altering the spoke angle in variations of 5°, 10°, and 15°. The vibration characteristic data of the wheel rim was obtained through simulation using ANSYS software. The research findings indicate that the natural frequencies range from approximately 364.7 Hz to 723.21 Hz. Furthermore, the maximum total deformation values range from approximately 9.7 mm to 22.5 mm.