cover
Contact Name
Muji Setiyo
Contact Email
muji@unimma.ac.id
Phone
+62293326945
Journal Mail Official
mesi@unimma.ac.id
Editorial Address
Universitas Muhammadiyah Magelang, Jl. Bambang Soegeng KM. 4 Mertoyudan Magelang, Telp/Faks : (0293) 326945
Location
Kab. magelang,
Jawa tengah
INDONESIA
Mechanical Engineering for Society and Industry
ISSN : -     EISSN : 27985245     DOI : https://doi.org/10.31603/mesi
Aims Mechanical engineering is a branch of engineering science that combines the principles of physics and engineering mathematics with materials science to design, analyze, manufacture, and maintain mechanical systems (mechanics, energy, materials, manufacturing) in solving complex engineering problems. Therefore, this journal accommodates all research documentation and reports on technology applications in society and industry from various technology readiness levels (TRL): basic, applied, and report of technology application. Basic - theoretical concepts of natural science, application of engineering mathematics, special and unique materials science, theoretical principles of engineering design, production, energy conversion, or industrial mechatronics/automation that support mechanical engineering analysis with a sustainable engineering perspective. Applied - thermal-mechanical design (energy, applied mechanics, material selection, material strength analysis) to support sustainable design and engineering capabilities. Report of technology application - the impact of technology on economic and social, ecological principles, sustainability principles (sustainability), communication techniques, and factual knowledge that contribute to solving complex and sustainable engineering problems. Scope Aerodynamics and Fluid Mechanics This scope includes boundary layer control, computational fluid dynamics for engineering design and analysis; turbo engines; aerodynamics in vehicles, trains, planes, ships, and micro flying objects; flow and induction systems; numerical analysis of heat exchangers; design of thermal systems; Wind tunnel experiments; Flow visualization; and all the unique topics related to aerodynamics, mechanics and fluid dynamics, and thermal systems. Combustion and Energy Systems This scope includes the combustion of alternative fuels; low-temperature combustion; combustion of solid particles for hydrogen production; combustion efficiency; thermal energy storage system; porous media; optimization of heat transfer devices; shock wave fundamental propagation mechanism; detonation and explosion; hypersonic aerodynamic computational modeling; high-speed propulsion; thermo-acoustic; low-noise combustion; and all the unique topics related to combustion and energy systems. Design and Manufacturing This scope includes computational synthesis; optimal design methodology; biomimetic design; high-speed product processing; laser-assisted machining; metal plating, micro-machining; studies on the effects of wear and tear; fretting; abrasion; thermoelastic. This scope also includes productivity and cycle time improvements for manufacturing activities; production planning; concurrent engineering; design with remote partners, change management; and involvement of the Industry 4.0 main area in planning, production, and maintenance activities. Dynamics and Control The dynamics and control group includes aerospace systems; autonomous vehicles; biomechanics dynamics; plate and shell dynamics; style control; mechatronics; multibody system; nonlinear dynamics; robotics; space system; mechanical vibration; and all the unique topics related to engine dynamics and control. Materials and Structures The scope of this field includes composite fabrication processes; high-performance composites for automotive, construction, sports equipment, and hospital equipment; natural materials; special materials for energy sensing and harvesting; nanocomposites and micromechanics; the process of modeling and developing nanocomposite polymers; metal alloys; energy efficiency in welding and joining materials; vibration-resistant structure; lightweight-strong design; and all the unique topics related to materials and construction. Vibrations, Acoustics, and Fluid-Structure Interaction This group includes nonlinear vibrations; nonlinear dynamics of lean structures; fluid-structure interactions; nonlinear rotor dynamics; bladed disc; flow-induced vibration; thermoacoustic; biomechanics applications; and all the unique topics related to vibrations, acoustics, and fluid-structure interaction.
Articles 7 Documents
Search results for , issue "Vol 3 No 2 (2023)" : 7 Documents clear
Characteristics of briquettes from plastic pyrolysis by-products Sunaryo Sunaryo; Sutoyo Sutoyo; Suyitno Suyitno; Zainal Arifin; Thomas Kivevele; Artur I. Petrov
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.9114

Abstract

Pyrolysis has been proven as a method to reduce plastic waste and produce useful products, especially liquid fuels. However, plastic pyrolysis also produces gases and char as by-products which are being investigated for useful products. Therefore, our present study aims to investigate the char characteristics of plastic pyrolysis for further use as briquettes. Seven samples of char by-products from the pyrolysis process of low-density polyethylene (LDPE) plastic at various reaction temperatures and catalyst types were studied. The proximate test is used to determine the properties of char such as moisture content, ash, volatile matter, and fixed carbon while the bomb calorimeter is used to determine the calorific value. Briquettes are formed by mixing 4 grams of char and 0.5-1 gram of binder (1% starch and 90% water). The briquettes were formed into solid cylinders with a diameter of 1.75 cm and formed with a pressure of 10 kg/cm2. Furthermore, the impact resistance index (IRI) was used to test the performance of the briquettes and showed an IRI value between 100 and 200. However, of the seven char samples tested, three of them were impossible to process into briquettes because they melted during the combustion test.
Tensile shear load in resistance spot welding of dissimilar metals: An optimization study using response surface methodology Sukarman Sukarman; Triyono Triyono; Budi Kristiawan; Amir Amir; Nazar Fazrin; Ade Suhara; Renata Lintang Azizah; Fajar Mucharom
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.9606

Abstract

Resistance spot welding (RSW) is being applied extensively in different industries, specifically the automotive sector. Therefore, this study was conducted to optimize the tensile strength load (TSL) in RSW by investigating the application of dissimilar materials as input parameters. The optimization process involved the combination of different galvanized and non-galvanized steel materials. The production of car bodies using galvanized steel with approximately 13.0 microns thick zinc (Zn) coating was found to be a standard practice, but this zinc layer usually presents challenges due to the poor weldability. This study prepared 27 units of TSL samples using a spot-welding machine and a pressure force system (PFS) for the electrode tip. The aim was to determine the optimal TSL through the exploration of specified RSW parameters. The process focused on using the response surface methodology (RSM) to achieve the desired outcome while the Box-Behnken design was applied to determine the input parameters. The optimal TSL obtained was 5265.15 N by setting the squeeze time to 21.0 cycles at a welding current of 24.5 kA, a welding time of 0.5 s, and a holding time of 15.0 cycles. The highest TSL value recorded was 5937.94 N at 21.0 cycles, 27.0 kA, 0.6 s, and 15.0 cycles respectively. These findings were considered significant to the enhancement of productivity across industries, specifically in the RSW process. However, further study was required to investigate additional response variables such as the changes in hardness and microstructure.
Verification of a new prototype design of bogie monorail frame with variation of static loading Budi Haryanto; Makmuri Nuramin; Djoko Wahyu Karmiadji; Mustasyar Perkasa; Anwar Anwar; Budi Prasetiyo; Yudi Irawadi; Ogi Ivano; Yana Heryana; Indra Hardiman; Saeful Andhi; Wahyu Purnawirawan
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.9905

Abstract

The purpose of this study was to analyze and validate the strength of a new design monorail bogie frame. The 33 tons capacity of passenger train is supported by two bogie frames, in which each bogie frame structure should support 16.5 tons train load. A bogie frame prototype of monorail structure made of steel material JIS SS 400 was tested with 16.5 tons of static loading. Static test results showed the maximum strain value was 479 microstrain or equivalent to a stress value of 100.54 MPa. The experimental stress value was still far below the yield stress value of the material of 245 MPa. Based on the results of static testing, the design of the monorail bogie frame structure meets strength criteria and safety requirements.
Optimizing energy harvesting from waste motor oil through steam reforming: A path to efficient combustion and emissions reduction Budi Waluyo; Bambang Pujiarto; Nofa Ardana; An’nisa Solihah; Muhammad Latifur Rochman; Ahmad Tresno Adi
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10362

Abstract

Waste Motor Oil (WMO) is a hazardous waste material with the potential to contaminate water, soil, and the atmosphere. The management and engineering of WMO have become imperative in modern society for both resource utilization and environmental protection. Maximizing the energy content of WMO poses a significant challenge for researchers, to solve environmentally friendly solutions. Direct combustion of WMO often results in incomplete combustion and elevated CO emissions. Therefore, this research aims to optimize the harnessing of WMO's energy potential through a furnace equipped with steam injection. The steam is generated by utilizing the heat energy produced during the WMO heating process. Our study demonstrates that steam injection in the WMO furnace is an effective method for maximizing energy content while simultaneously reducing CO emissions.
Thermodynamic modelling of a novel solar-ORC with bottoming ammonia-water absorption cycle (SORCAS) powered by a vapour compression refrigeration condensate for combined cooling and power Fidelis Ibiang Abam; Macmanus Chinenye Ndukwu; Oliver Ibor Inah; Onyishi Donatus Uchechukwu; Muji Setiyo; Olusegun David Samuel; Remy Uche
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10365

Abstract

The current study proposed an innovative combined power and cooling solar Organic Rankine Cycle (ORC) with bottoming vapour absorption (VAS) and vapour compression refrigeration (VCP) cycles using ammonia–water as the working fluid. The advantage of these cycles is the integration of two cooling evaporators, producing equivalent refrigerating effects from the VCP condensate. The power generation sub-system, the topping cycle, employed a solar-driven ORC. At operating conditions, the energy and exergy efficiencies stood at 38.63 and 42.09%, respectively, with overall refrigerating effect, power output, and COP calculated at 1358 kW, 26.65 kW, and 2.34 in that order. The parametric results indicated a 40% and 55% increase in energy and exergy efficiencies at high turbine inlet temperatures, with a 1.73 % increase in refrigerating effect and a 1.56% decrease in the exergy of cooling. Similarly, at an elevated generator pressure of 4.75 bar, an overall COP of 3.046 was reached. The total exergy of products and fuel was calculated at 1347.91 and 786.38 kW, respectively, with an exergy destruction ratio of 0.997. The results showed a total improvement potential (IP) of 426.768 kW, with the evaporators, absorber, and heat exchanger having the highest IP of 66. 32, 119.4, and 68.08 kW respectively. The study showed enhancement in performance when compared with previous studies and recommended system optimization and sustainability analysis as future considerations for system practical application.
Effect of current, time, ethanol concentration, and pH electrolyte on ZnO coated carbon fiber using electrochemical deposition method Salahuddin Junus; Gindeka Bimara Aryantaka; Rizky Akhmad Prayogi; Mochamad Asrofi; Rahma Rei Sakura; R. Puranggo Ganjar Widityo; Robertus Sidartawan
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10493

Abstract

One of the recent developments in carbon fiber is using nano zinc oxide (ZnO) as a coating on carbon fiber to create piezoelectric materials. Piezoelectric materials can generate electricity when subjected to mechanical pressure or strain, and vice versa. ZnO nanomaterials have been a focal point of research due to their high surface-to-volume ratio and high reactivity. This study reported on the use of ZnO for coating agents in carbon fiber sensors. The novelty in this research is the composition of current, time, ethanol concentration, and pH electrolyte to produce the optimum composition of piezoelectric material. The process was conducted using an electrochemical method, which converts electrical energy into chemical energy through electro-deposition. This study considers four independent variables: electrolyte current (1.2 A and 1.4 A), electrolyte pH (2.0, 4.0, and 6.0), ethanol concentration (70% and 96%), and coating duration (90, 180, and 270 seconds). The results show that 1.4 A produces the highest average voltage, followed by electrolyte pH 6 and 70% ethanol concentration. The best coating time was 270 seconds producing the highest average voltage. Micro and SEM confirm that 1.4 A produced a thicker and more uniform layer compared to 1.2 A. High pH, 70% ethanol concentration, and longer coating time also contributed to the formation of thicker layers. XRD test shows that the layers formed had amorphous and hexagonal crystal structures. The average crystal diameter size varies depending on the combination of independent variables used in the coating process. With these results, piezoelectric has potential as a pulse sensor material.
The role of mechanical engineering in the era of industry 4.0 and society 5.0 Muji Setiyo; Muhammad Latifur Rochman
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10786

Abstract

The article delves into the contrasting impacts and roles of Industry 4.0 and Society 5.0 in technological and societal advancement. While Industry 4.0 promises enhanced efficiency and income but raises concerns about automation-driven inequality, mechanical engineering has evolved from traditional to digital realms. Society 5.0, emerging as a response to societal issues, envisions a human-centric society bridging physical and virtual worlds, emphasizing technology for inclusive and sustainable progress. This transformative shift amalgamates human intellect and technology, advocating preparedness and lifelong learning amidst the ongoing industrial revolution. Mechanical engineering's pivotal role spans both paradigms, optimizing Industry 4.0's manufacturing systems and spearheading sustainable solutions and user-centric technologies in Society 5.0, emphasizing a holistic approach to societal and industrial challenges.

Page 1 of 1 | Total Record : 7