cover
Contact Name
Eko Fajar Cahyadi
Contact Email
ekofajarcahyadi@ittelkom-pwt.ac.id
Phone
+6285384848666
Journal Mail Official
infotel@ittelkom-pwt.ac.id
Editorial Address
Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) Institut Teknologi Telkom Purwokerto Jl. D. I. Panjaitan, No. 128, Purwokerto 53147, Indonesia
Location
Kab. banyumas,
Jawa tengah
INDONESIA
Jurnal INFOTEL
ISSN : 20853688     EISSN : 24600997     DOI : https://doi.org/10.20895/infotel.v15i2
Jurnal INFOTEL is a scientific journal published by Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) of Institut Teknologi Telkom Purwokerto, Indonesia. Jurnal INFOTEL covers the field of informatics, telecommunication, and electronics. First published in 2009 for a printed version and published online in 2012. The aims of Jurnal INFOTEL are to disseminate research results and to improve the productivity of scientific publications. Jurnal INFOTEL is published quarterly in February, May, August, and November. Starting in 2018, Jurnal INFOTEL uses English as the primary language.
Articles 9 Documents
Search results for , issue "Vol 13 No 4 (2021): November 2021" : 9 Documents clear
A double e-shape microstripe antenna design with proximity coupling techniques Lukman Medriavin Silalahi; Imelda Uli Vistalina Simanjuntak; Agus Dendi Rochendi
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.608

Abstract

Wireless technology is currently growing along with the increasing need for communication in society. This of course must be supported by better and more efficient device specifications, one of which is the antenna. Microstrip antenna is currently one type of antenna that is widely carried out by lecturers and students because of its shape that can be arranged in such a way that it is expected to be more efficient and practical. In this research, a Double E-shaped microstrip antenna with proximity coupling technique will be designed which will be applied in S-Band services. The S-Band service itself is in the 2-4 GHz frequency range which can serve broadband services. The initial stage of the design takes into account the dimensions of the antenna using the applicable formula to obtain suitable dimensions, then optimization of the feed slot and position of the letter E on the antenna patch uses Ansoft HFSS simulation to obtain the best optimization results. From the design results, it is expected to obtain a microstrip antenna in the form of Double E-shaped with Proximity Coupling technique with a working frequency of 2.5 GHz, a return loss of -18.573 dB, a bandwidth of 144 MHz, a VSWR of 1.265 and a gain of 5.8 dB with the results of the omnidirectional radiation pattern being met as expected.
Smart card security mechanism with dynamic key N Noprianto; Vivi Nur Wijayaningrum
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.652

Abstract

As a currently popular technology, the use of smart cards continues to increase in various fields and the rapid development of technology. Therefore, data security stored on a smart card needs to focus on avoiding misuse of data by unauthorized parties. However, it is not enough for the security mechanism to be carried out only during the communication process of sending data. Then, the mechanism for securing data on the smart card also needs to be done. In this study, a data security technique using dynamic keys is proposed by changing the key and access conditions on the smart card according to predetermined rules. Dynamic keys are a new mechanism proposed to authenticate smart cards using a different key on each card. This technique ensures that the keys used to access each smart card are different so that the risk of data duplication and modification threats can be minimized. In addition, this mechanism is a low-cost security privacy protection. The test results show that the data security technique using dynamic keys ensures that read and write access to the smart card can only be done if the keys match the rules.
Automatic detection of covid-19 based on CT Scan images using the convolution neural network Mawaddah Harahap; Masdiana Damanik; Linda Wati; Wahyudi Valentino Simamora; Isnaeni Khairani Sipahutar; Amir Mahmud Husein
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.689

Abstract

The 2019 coronavirus pandemic (Covid-19) has been declared a health emergency by WHO with the death rate steadily increasing worldwide, various efforts have been made to deal with this pandemic, from prediction to receiving medical imaging. CT Scan and chest X-Ray images have been proven to be accurate to help medical personnel diagnose COVID, in this paper, we propose a convolutional neural network (CNN) approach and the DenseNet transfer learning model series which aims to understand and find the best classification for COVID or Non-COVID detection. On CT scan chest images, we made two special models in the Descent series, then compared the CNNs in both models by calculating the Accuracy, Precision, Recall, and F1-Score values and presented the results in the confusion matrix. The testing framework is carried out on CNN and the first model of the DenseNet series uses adam optimization, the input function is 244x244x3, the soft-max function is applied as an activity with losses across entropy categories, epoch 50, and batch size for training and testing 16 while validation uses batch size 8, the EarlyStopping function also determined, From the test results, the CNN model is superior to the Densenet series of the first model with an accuracy of about 0.76 (76%), when testing the second model, we carried out the shifting, zooming process and changed the input function to 64x64x3, epoch 30 by adding 4 layers. The second model approach produces better accuracy than CNN and the first DenseNet series, but not as good as expected, based on the test results on the second model produces an accuracy of 0.90 (90%) on Densenet169, Densenet121 around 0.88 (88%) and last Densenet201 is about 0.83 83%), so it is superior to simple CNN models
Evaluation of MVNO model implementation in remote and border areas using the consistent fuzzy preference relations method Anggun Fitrian Isnawati; Ridwan Pandiya; Ade Wahyudin
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.691

Abstract

Law No. 36 of 1999 concerning Telecommunication has brought many changes, especially in the development of telecommunications infrastructure in Indonesia. However, the penetration of telecommunications services in the forefront, outermost, and backward regions is still relatively low. The government has made various efforts in terms of minimizing the gap in telecommunication services between urban and rural areas through various programs. However, an acceleration is needed so that the service disparity can be immediately overcome. One of the telecommunications products that can be applied to overcome these barriers is the Mobile Virtual Network Operator (MVNO). This study evaluates the most appropriate type of MVNO model to be applied in Indonesia by implementing the Consistent Fuzzy Preference Relations (CFPR) method. This method is able to accommodate expert opinion through a series of scientific steps so as to produce weights for each alternative type of MVNO model. The results obtained are that the most appropriate model to be applied in Indonesia by taking into account the criteria given. The implementation of this model is expected to be able to encourage the optimization of BTS USO that has been declared by the government.
Breast cancer recurrence prediction system using k-nearest neighbor, naïve-bayes, and support vector machine algorithm I Ketut Agung Enriko; Melinda Melinda; Agnesia Candra Sulyani; I Gusti Bagus Astawa
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.692

Abstract

Breast cancer is a serious disease and one of the most fatal diseases in the world. Statistics show that breast cancer is the second common cancer worldwide with around two million new cases per year. Some research has been done related to breast cancer, and with the advancements of technology, breast cancer can be detected earlier by using artificial intelligence or machine learning. There are popular machine learning algorithms that can be used to predict the existence or recurrence of breast disease, for example, k-Nearest Neighbor (kNN), Naïve Bayes, and Support Vector Machine (SVM). This study aims to check the prediction of breast cancer recurrence using those three algorithms using the dataset available at the University of California, Irvine (UCI). The result shows that the kNN algorithm gives the best result in terms of accuracy to predict breast cancer recurrence.
All-in-one computation vs computational-offloading approaches: a performance evaluation of object detection strategies on android mobile devices Muhammad Abdullah Rasyad; Favian Dewanta; Sri Astuti
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.700

Abstract

Object detection gives a computer ability to classify objects in an image or video. However, high specified devices are needed to get a good performance. To enable devices with low specifications performs better, one way is offloading the computation process from a device with a low specification to another device with better specifications. This paper investigates the performance of object detection strategies on all-in-one Android mobile phone computation versus Android mobile phone computation with computational offloading on Nvidia Jetson Nano. The experiment carries out the video surveillance from the Android mobile phone with two scenarios, all-in-one object detection computation in a single Android device and decoupled object detection computation between an Android device and an Nvidia Jetson Nano. Android applications send video input for object detection using RTSP/RTMP streaming protocol and received by Nvidia Jetson Nano which acts as an RTSP/RTMP server. Then, the output of object detection is sent back to the Android device for being displayed to the user. The results show that the android device Huawei Y7 Pro with an average FPS performance of 1.82 and an average computing speed of 552 ms significantly improves when working with the Nvidia Jetson Nano, the average FPS becomes ten and the average computing speed becomes 95 ms. It means decoupling object detection computation between an Android device and an Nvidia Jetson Nano using the system provided in this paper successfully improves the detection speed performance.
Designing a microcontroller-based half-duplex interface device drove by the touch-tone signal Arief Goeritno; Ika Setyawibawa; Dwi Suhartono
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.712

Abstract

The interface device for communicating (IDC) as a bridge for the merger between two different systems based on different protocols and standards can be made of several electronic modules. The two Arduino boards (UNO R3 and MEGA2560 R3) have been constructed as the electronic modules of a gateway become a haft-duplex IDC, and are driven by the touch-tone signal. The research objectives, i.e., assembling some of the hardware for the embodiment of the adapter system, making a program structure, and performing a test of the IDC system. The haft-duplex IDC has been carried out by integrating all components by wiring to form an embedded system. Then, programming the microcontroller modules based on the Arduino software is carried outin six stages. Finally, the simulation test with the provision of conditions is carried out and obtained of six conditions for (i) the circuit of ring detection, (ii) the circuit of voice-operated transmit, (iii) the circuit off/on the hook of the telephone module, (iv) the circuit of tone decoder, (v) dial-up telephone numbers via push buttons and switching IC circuits, and (vi) the circuits of voice recording and storage in the form to playback. The test's success with six conditions has been an indication that the microcontroller-based IDC system is functioning as expected. Completing, the conclusion, and recommendationsrelated to measurement on the various purposes and the real conditions for the half-duplex interface adapter can be implemented.
Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine and logistic regression Windyaning Ustyannie; Emy Setyaningsih; Catur Iswahyudi
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.726

Abstract

The main problem in producing high accuracy software defect prediction is if the data set has an imbalance class and dichotomous characteristics. The imbalanced class problem can be solved using a data level approach, such as resampling methods. While the problem of software defects predicting if the data set has dichotomous characteristics can be approached using the classification method. This study aimed to analyze the performance of the proposed software defect prediction method to identify the best combination of resampling methods with the appropriate classification method to provide the highest accuracy. The combination of the proposed methods first is the resampling process using oversampling, under-sampling, or hybrid methods. The second process uses the classification method, namely the Support Vector Machine (SVM) algorithm and the Logistic Regression (LR) algorithm. The proposed, tested model uses five NASA MDP data sets with the same number attributes of 37. Based on the t-test, the < = 0.0344 < 0.05 and the > = 3.1524 > 2.7765 which indicates that the combination of the proposed methods is suitable for classifying imbalanced class. The performance of the classification algorithm has also improved with the use of the resampling process. The average increase in AUC values using the resampling in the SVM algorithm is 17.19%, and the LR algorithm is at 7.26% compared to without the resampling process. Combining the three resampling methods with the SVM algorithm and the LR algorithm shows that the best combining method is the oversampling method with the SVM algorithm to software defects prediction in imbalanced class with an average accuracy value of 84.02% and AUC 91.65%.
Fuzzy based sensorless tracking controller on the dual-axis PV panel for optimizing the power production Bandiyah Sri Aprilia; Muhammad Zakiyullah Romdlony; Jangkung Raharjo; Yogi Ghifari Sidik
JURNAL INFOTEL Vol 13 No 4 (2021): November 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i4.738

Abstract

In general active sun trackers move because they respond to light sensors that measure the intensity of sunlight. However, sensor-based trackers are usually more expensive than sensor-less trackers. In addition, based on several studies, a comparison between the sensor and sensorless based tracker only reports lower tracking error and higher power generation for sensor-based than sensorless tracker. However, it does not include an analysis of energy use on the sensor. Therefore, this study aims to design a sensorless closed-loop tracking system for solar panels with two degrees of freedom. The tracking controller in this study is based on the Fuzzy Logic Controller (FLC) method. In this study, a dual-axis PV can increase power output by 20.2% compared to a fixed PV (0 ° axis position). In comparison to a fixed PV, dual-axis PV adjusts the solar panel perpendicular to the sun's position to optimize electrical conversion.

Page 1 of 1 | Total Record : 9


Filter by Year

2021 2021