cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Bahan Alam Terbarukan
ISSN : 23030623     EISSN : 24072370     DOI : -
Core Subject : Science,
This journal presents articles and information on research, development and applications in biomass conversion processes (thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion) and equipment to produce fuels, power, heat, and value-added chemicals from biomass. A biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol (see also alcohol fuel). The high-value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce greenhouse gas emissions from traditional power plant facilities. Future biorefineries may play a major role in producing chemicals and materials that are traditionally produced from petroleum.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue " Vol 1, No 1 (2012): June 2012" : 5 Documents clear
EKSTRAKSI MINYAK KETUMBAR (Coriander Oil) DENGAN PELARUT ETANOL DAN n-HEKSANA Handayani, Prima Astuti; Juniarti, Eqi Rosyana
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2538

Abstract

Indonesia memiliki banyak sumber daya alam, diantaranya minyak atsiri. Salah satu sumber daya alam yang potensial adalah minyak biji ketumbar (coriandrum oil). Kandungan terbesar dalam minyak ketumbar adalah senyawa linalool yang dapat dimanfaatkan sebagai bahan baku parfum, farmasi, aroma makanan dan minuman, sabun mandi, bahan dasar lilin, sabun cuci, sintesis vitamin E dan pestisida maupun insektida. Tujuan dari percobaan ini adalah untuk mempelajari pengaruh penggunaan pelarut etanol dan n-heksana terhadap rendemen minyak ketumbar yang dihasilkan serta senyawa kimia yang terdapat dalam minyak ketumbar. Ekstraksi minyak ketumbar dengan pelarut etanol dan n-heksana menggunakan alat ekstraktor soxhlet. Biji ketumbar yang tua dan kering dihancurkan kemudian dibungkus kertas saring dan dimasukan dalam ekstraktor soxhlet. Temperatur proses ekstraksi sesuai dengan titik didih dari pelarut yang digunakan. Ekstraksi berakhir jika warna pelarut dalam ekstraktor seperti warna pelarut semula. Filtrat yang diperoleh kemudian di recovery dengan ekstraktor soxhlet untuk memisahkan minyak atsiri dari pelarutnya. Minyak ketumbar kemudian di analisis dengan uji GC-MS untuk mengetahui senyawa kimia yang terkandung dalam minyak tersebut. Dari hasil percobaan diperoleh bahwa rendemen minyak ketumbar dengan pelarut etanol sebesar 1,17% dengan kadar linalool sebesar 57,13%, sedangkan dengan pelarut n-heksana diperoleh rendemen minyak ketumbar sebesar 0,84% dengan kadar linalool sebesar 47,25%. Indonesia has many natural resources, such as the essential oils. One of the potential re-sources is the coriander seed oil (coriandrum oil). The greatest content in coriander oil is linalool compounds that can be used as raw materials of perfumes, pharmaceuticals, food and beverage scent, soap, basic materials for candles, laundry soap, synthetic vitamin E and pesticides as well as insecticide. The purpose of this experiment was to study the effect of the use of ethanol and n-hexane toward the yield of the resulted coriander oil and the chemical compounds in corriander oil. The extraction of Coriander oil with ethanol and n-hexane was performed using a Soxhlet extractor. The mature and dried Coriander seeds were crushed, then wrapped in filter paper and inserted in the Soxhlet extractor. The temperature of the extraction process was set according to the boiling point of the used solvent. The extraction process finishes if the color of the solvent in the extractor looks like the original color. The obtained filtrate was then recycled by using Soxhlet extractor to separate the essential oil from the solvent. Then, the Coriander oil was analyzed by test GC-MS method to determine the contained chemical compounds in the oil. The experimental result shows the yield of coriander oil obtained from the extraction using ethanol is 1.17% with linalool concentration of 57.13%, while the yield of the coriander oil from extraction using n-hexane is 0.84% with linalool concentration of 47.25%.
PENGOLAHAN BIJI MAHONI (Swietenia Macrophylla King) SEBAGAI BAHAN BAKU ALTERNATIF BIODIESEL Damayanti, Astrilia; Bariroh, Siti
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2539

Abstract

Peningkatan kebutuhan minyak bumi yang terus menerus akan mengakibatkan kelangkaan bahan bakar minyak. Sumber energi alternatif yang ramah lingkungan, salah satunya adalah biodiesel. Bahan baku potensial untuk memproduksi biodiesel yang tidak bersaing dengan bahan baku pangan contohnya adalah biji mahoni (swietenia macrophylla king). Tahapan yang diperlukan dalam percobaan biodiesel adalah proses pengambilan minyak biji mahoni dengan proses penyangraian, degumming, dan proses transesterifikasi. Alat yang diperlukan dalam pembuatan biodiesel yaitu: labu alas bulat dilengkapi kondensor, gelas ukur, pengaduk magnetik, alat-alat gelas lab, dan lain sebagainya. Proses pengambilan minyak dilakukan dengan penyangraian yang hasilnya di degumming dengan asam fosfat 5% b/b pada suhu 80ºC selama 15 menit. Degumming bertujuan untuk menghilangkan getah, lendir, protein, resin dan gum. Proses kedua yaitu transesterifikasi dengan metanol 1:6 (minyak dan mtanol) dengan KOH 0,1 N pada suhu 60ºC selama 1 jam. Setelah diperoleh metil ester, dilakukan proses pencucian atau penetralan metil ester pada suhu pemanasan 104ºC untuk menghilangkan kadar airnya. Dari hasil percobaan diperoleh rendemen minyak sebesar 86,92%, uji densitas 874,08 kg/m³, viskositas 3,07 mm2/s, dan bilangan asam 0,5601 mg KOH/g. Metil ester yang dihasilkan telah sesuai dengan SNI-04-7182-2006. An increased demand of the fossil fuel would lead to scarcity of the fossil fuel in the future. An alternative of environmentally friendly energy sources is biodiesel. It is accounted that the resources for producing biodiesel should not compete with food raw materials, such as mahogany grain, (swietenia macrophylla king). The necessary steps in the experiment of producing biodiesel are process of taking the mahogany seed-oil by using roasting method, degumming, and transesterification process. The required equipments for producing biodiesel were round-bottom flask equipped with condenser, measuring cylinder, magnetic stirrer, other lab-glassware, etc. Firstly, the process of taking the oil from mahogany seed was carried by using roasting method; then the result was degummed by using 5wt% of Phosphate acid at 80 oC for 15 minutes. The degumming process was aimed to remove sap, mucus, proteins, resin and gum. The second step was transesterification process using methanol 1:6 (oil and methanol) and 0.1N KOH solutions, which was carried out at 60 oC for 1 hour. Once the methyl ester was produced, the next steps were washing and neutralization of methyl ester at heating temperature of 104 oC to remove the water content in the methyl ester. The obtained yield from the experiments was 86.92%. The tested density, viscosity, and the acid value were 874.08 kg/m³, 3.07 mm2/s, and 0.5601 mg KOH/g, respectively. The produced Methyl ester is in accordance with SNI-04-7182-2006.
BIODIESEL DARI CAMPURAN LEMAK SAPI (Beef Tallow) DAN MINYAK SAWIT Pita Rengga, Wara Dyah; Ernawati, Rosidah Erlis
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2540

Abstract

Cadangan minyak bumi semakin menipis, sehingga dicari bahan bakar alternatif, salah satunya adalah biodiesel. Minyak nabati terutama minyak sawit merupakan bahan baku edible sedangkan lemak sapi merupakan bahan baku non-edible dengan biaya rendah dan memiliki ketersediaan tinggi pada produksi sapi. Pemanfaatan lemak sapi yang belum maksimal dapat digunakan bersama minyak sawit untuk menghasilkan biodiesel. Lemak sapi dicairkan supaya menjadi minyak sapi. Bahan baku minyak sapi dan minyak sawit dicampur dengan perban-dingan 3:1. Campuran minyak ditransesterifikasi dengan metanol dengan perbandingan molar (1:6) dan katalis NaOH. Proses dilakukan selama 90 menit pada suhu ±65°C. Hasil proses transesterifikasi adalah metil ester dan gliserol. Metil ester pada lapisan atas dipisahkan dari gliserol kemudian dilakukan pencucian. Metil ester atau biodiesel selanjutnya diuji angka asam, viskositas, densitas, dan analisis menggunakan GC-MS. Yield biodiesel yang dihasilkan dari campuran minyak sapi dan minyak sawit adalah 76%, angka asam 0,67124 mg-KOH/g, densitas 857,76 kg/cm³, dan viskositas 3,0074 mm2/s. Kesemua parameter tersebut sesuai dengan standart mutu SNI biodiesel. Kandungan metil ester dari minyak sawit dan lemak sapi adalah metiloleat dan metil palmitat. The availability of the fossil fuel is decreasing; hence the finding of an alternative fuels is very important. One of those alternative fuels is biodiesel. Vegetable oil, especially palm oil is the edible raw material, while the beef tallow is the non-edible raw material with low cost production and the availability is huge in the cattle production. The beef tallow mixed with palm oil can be used as raw material for producing biodiesel. Firstly, the beef tallow was melted into beef oil. The raw materials of beef tallow and palm oil were mixed with the composition ratio of 3:1. The resulted mixed-oil was transesterificated by adding methanol with molar ratio of 1:6 and NaOH as catalyst. The transesterification process was carried for 90 minutes at ±65°C. Transesterification process produces methyl ester and glycerol. The produced methyl ester on the upper layer was separated from the glycerol and then washed. The produced methyl ester was tested to determine the acid number, viscosity, and density. Analysis of the methyl ester components using GC-MS was also conducted. The experimental results show the yield of produced biodiesel from mixed-oil of beef tallow and palm oil (3:1) was 75.93%. The tested acid number, density, and viscosity were 0.67124 mg-KOH/g, 85.76 kg/cm³, and 3.0074 mm2/s, respectively. Data of the tested methyl ester properties are in accordance with the quality of standard ISO for methyl ester. The content of the produced methyl ester from the mixed-oil of beef tallow and palm oil are metiloleat and methyl palmitate.
MINYAK ATSIRI DARI KAMBOJA KUNING, PUTIH, DAN MERAH DARI EKSTRAKSI DENGAN N-HEKSANA -, Megawati; Dwi Saputra, Satrya Wahyu
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2541

Abstract

Bunga kamboja merupakan jenis bunga yang banyak ditanam dan dapat tumbuh dengan baik serta merupakan bunga yang beraroma yang mempunyai nilai guna tinggi untuk diproduksi minyak atsirinya, yaitu minyak yang mudah menguap dan mengeluarkan aroma khas. Minyak atsiri ini mengandung lebih dari 30 jenis senyawa kimia, beberapa diantaranya merupakan senyawa-senyawa kimia yang sangat berharga, yang termasuk dalam golongan senyawa sesquiterpen, alkohol, alkana, resin, dan wax/parafin. Pada penelitian ini dilakukan ekstraksi minyak atsiri kamboja dengan 3 variasi jenis bunga, yaitu kamboja merah, kuning, dan putih. Metode ekstraksi yang dipilih menggunakan ekstraksi dengan n-heksana. Minyak kamboja diperoleh dengan menguapkan hasil ekstrak pada titik didih n-heksana sampai tidak didapatkan lagi embunan, dilanjutkan dengan analisis rendemen minyak. Sementara itu, analisis jenis komponen minyak atsiri kamboja menggunakan Gas Chromatography-Mass Spectrometry (GC-MS). Kadar minyak atsiri hasil ekstraksi dengan pelarut n-heksana dari masing-ma-sing jenis bunga kamboja berbeda, dari kamboja kuning (4,457%), kamboja putih (2,908%), dan dari kamboja merah (2,763%). Hasil analisis GC-MS juga menunjukkan bahwa masing-masing minyak atsiri kamboja memiliki komponen kimia yang berbeda-beda. Senyawa kimia golongan alkohol diantaranya geraniol (2,64%), farnesol (8,61%), dan oktadekanol (3,87%), masing-masing dalam kamboja kuning, putih, dan merah. Adapun senyawa golongan alkana diantaranya oktadekana sebesar 21,24% (kamboja kuning), nonadekana (7,54% pada kamboja putih), dan 7,84% pada kamboja merah. Frangipani is a type of flower which is widely grown and have a nice scent, this flower  have a high value in order to produce essential oils. This essential oil contains more than 30 different types of chemical compound; some of them are chemical compounds that are very valuable, which is included in the sesquiterpen compounds, alcohols, alcane, wax/resin, and paraffin. In this research, the extraction of the Frangipani oil was conducted using three different flowers, i.e. the red, yellow, and white frangipani. The chosen extraction method was the extraction using n-hexane. The Frangipani oil was obtained by vaporizing the extraction results on the boiling point of n-hexane until there was no condensate left, and then continued with the analysis of the yield  of the oil. The analysis of the component of the frangipani’s essential oils was conducted using Gas Chromatography-Mass Spectometry (GC-MS). The concentration of the essential oils as the result of the extraction using n-hexane solvent from each different type of frangipani was different, i.e. from the yellow frangipani (4,457%), white frangipani (2,908%), and from the red frangipani (2,736%). The results of the GC-MS analysis also showed that each frangipani oil has its own chemical component. The chemical substance from the group of alcohol such as geraniol (2,64%), farnesol (8,61%), and octadenol (3,87%) each found in the yellow, white and red frangipani. The alcane group found in the oil samples such as octadecane (21,24%) on yellow frangipani, nonadecane (7,54%) on white frangipani, and 7,84% on red frangipani.
KAJIAN PROSES PEMBUATAN TEPUNG BUAH MANGGA (Mangivera Indica L) VARIETAS ARUMANIS DENGAN SUHU PERENDAMAN YANG BERBEDA Paramita, Octavianti
Jurnal Bahan Alam Terbarukan Vol 1, No 1 (2012): June 2012
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v1i1.2542

Abstract

Salah satu diversifikasi produk olahan yang menarik untuk dikembangkan adalah tepung da-ging buah mangga (mango powder) yang telah dikembangkan di negara India, Tepung buah mangga dapat digunakan sebagai bahan alternatif untuk membuat DF (dietary fibre), karena daging buah mangga mengandung pati yang banyak, tinggi selulosa, hemiselulosa, lignin dan carotin. Buah mangga  arumanis yang dibuat menjadi tepung mangga digunakan mangga arumanis yang belum matang / yang masih mentah. Proses perendaman sebelum dilakukan pengeringan sangat berpengaruh terhadap hasil dari tepung mangga yang dihasilkan baik berupa kandungan gizi dan warna. Penelitian ini bertujuan mendapatkan proses pembuatan tepung mangga varietas arumanis yang paling optimal hasilnya berdasarkan karakteristik fisik dan komposisi zat gizi. Proses pembuatan tepung mangga varietas arumanis yang paling optimal hasilnya dengan proses perendaman pada air dingin dan proses tersebut bisa dijadikan bahan dasar pembuatan olahan-olahan pangan yang tinggi serat. Karakteristik Fisik Tepung Mangga Arumanis dan Komposisi Zat Gizi Tepung Mangga Arumanis dengan proses Perendaman Air Dingin yaitu : Tepung berwarna putih kecoklatan, Tekstur : Halus, dan tidak tercium aroma mangga, Rendemen : 12,4 %., Kadar Serat : 3,7370 %, Kadar Vitamin C : 154,9944 mg/100 g, Kandungan Amilum/ Pati : 49,0419 % dan Kandungan Protein: 9,2856 %. One of the interesting diversification of the processed products to be developed is a mango pulp powder which has been developed in India. The mango flour can be used as an alternative material for making the dietary fiber (DF) because mango contains a lot of starch, high cellulose, hemicellulose, lignin, and carotin. The “arumanis” mango flour can be made from the immature “arumanis” mango fruits. The immersing process before drying greatly affect the quality of produced mangoes flour in terms of the nutrient composition and the colour. The study aimed to get the optimal results of the “arumanis” mangoes flour according to its characteristics and nutrient composition. The process of making the “arumanis” mangoes flour is optimally produced by immersion in the cold water. The resulted products from this process can be used as raw materials of producing food products with higher fiber content. The characteristics of the produced “arumanis” mangoes flour and its nutrient compositions, i.e. the powder colour is white-browned, the texture is smooth, doesn’t smell like mango, the yield is 12.4%, the fiber content is 3.7370%, the level of vitamin C is 154.9944 mg/100g, the starch content is 49.0419% and the protein content is 9.2856%.

Page 1 of 1 | Total Record : 5


Filter by Year

2012 2012


Filter By Issues
All Issue Vol 12, No 1 (2023): June 2023 [Nationally Accredited - Sinta 2] Vol 11, No 2 (2022): December 2022 [Nationally Accredited - Sinta 2] Vol 11, No 1 (2022): June 2022 [Nationally Accredited - SINTA 2] Vol 10, No 2 (2021): December 2021 [Nationally Accredited - Sinta 2] Vol 10, No 1 (2021): June 2021 [Nationally Accredited - SINTA 2] Vol 9, No 2 (2020): December 2020 [Nationally Accredited - Sinta 2] Vol 9, No 1 (2020): June 2020 [Nationally Accredited - Sinta 2] Vol 8, No 2 (2019): December 2019 [Nationally Accredited - Sinta 2] Vol 8, No 1 (2019): June 2019 [Nationally Accredited - Sinta 2] Vol 7, No 2 (2018): December 2018 [Nationally Accredited] Vol 7, No 1 (2018): June 2018 [Nationally Accredited] Vol 6, No 2 (2017): December 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 4, No 2 (2015): December 2015 Vol 4, No 2 (2015): December 2015 Vol 4, No 1 (2015): June 2015 Vol 4, No 1 (2015): June 2015 Vol 3, No 2 (2014): December 2014 Vol 3, No 2 (2014): December 2014 Vol 3, No 1 (2014): June 2014 Vol 3, No 1 (2014): June 2014 Vol 2, No 2 (2013): December 2013 Vol 2, No 2 (2013): December 2013 Vol 2, No 1 (2013): June 2013 Vol 2, No 1 (2013): June 2013 Vol 1, No 2 (2012): December 2012 Vol 1, No 2 (2012): December 2012 Vol 1, No 1 (2012): June 2012 Vol 1, No 1 (2012): June 2012 More Issue