Claim Missing Document
Check
Articles

Found 14 Documents
Search

Low-cost and open-source anthropomorphic prosthetics hand using linear actuators Triwiyanto Triwiyanto; I Putu Alit Pawana; Torib Hamzah; Sari Luthfiyah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14799

Abstract

A robust, low cost, open-source, and low power consumption in the research of prosthetics hand is essential. The purpose of this study is to develop a low-cost, open-source anthropomorphic prosthetics hand using linear actuator based on electromyography (EMG) signal control. The main advantages of this proposed method are the low-cost, lightweight and simplicity of controlling the prosthetic hand using only single channel. This is achieved by evaluating the DC motor and exploring number of locations of the EMG signal. The development of prosthetics hand consists of 3D anthropomorphic hand design, active electrodes, microcontroller, and linear actuator. The active electrodes recorded the EMG signal from extensor carpi radialis longus. The built-in EMG amplifier on the electrode amplified the EMG signal. Further, the A/D converter in the Arduino microcontroller converted the analog signal into digital. A filtering process consisted of bandpass and notch filter was performed before it used as a control signal. The linear actuator controlled each finger for flexion and extension motion. In the assessment of the design, the prosthetic hand capable of grasping ten objects. In this study, the cost and weight of the prosthetics hand are 471.99 US$ and 0.531 kg, respectively. This study has demonstrated the design of low cost and open-source of prosthetics hand with reasonable cost and lightweight. Furthermore, this development could be applied to amputee subjects.
Long Distance Dual SpO2 Monitoring System for Premature Babies Using Bluetooth Communication Priyambada Cahya Nugraha; Muhammad Ridha Mak'ruf; Lusiana; Sari Luthfiyah; Wahyu Caesarendra
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.7

Abstract

Monitoring the baby's health status is very important, especially for babies born prematurely. Oxygen saturation levels in newborns are very important to know because when the oxygen saturation levels in newborns are low, it is necessary to watch out for hemodynamic abnormalities in the baby. Measurement of oxygen saturation levels in newborns can help detect congenital abnormalities in infants early. This study aims to design an equipment system to continuously monitor the condition of oxygen saturation in newborns. Where in this discussion a monitoring tool is used to monitor 2 premature babies in a baby incubator simultaneously using a Neonatal Fingertip sensor. The system will display the oxygen saturation (SpO2) value and signal. Monitoring on this tool is done wirelessly using the HC-05. Based on the results of tests and measurements in 5 different patients with a pulse oximeter comparison, the difference value of 1% in each patient's results was obtained. The results of this study will greatly help facilitate the work of paramedics in monitoring the vital conditions of newborn babies.
Effect of Irradiation Distance on Tube Voltage Measurement and X-Ray Device Time Using Scintillator All Adin Nurhuda; M. Ridha Mak'ruf; Tri Bowo Indrato; Sari Luthfiyah
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 2 (2022): April
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i2.7

Abstract

The results of the output of the X-ray device are very important to know how much the correct value, whether it is in accordance with the arrangements made by radiology personnel or there is a difference even deviation of the value out of the arrangement. This conformity test activity needs a testing tool that is often used by BAPETEN personnel to find out how much the output value of KV, Time, Dose, Room leak, mA and mAs from an X-ray device unit. The purpose of this study was to analyze the effect of irradiation distance on tube voltage measurements and X-ray device time using Scintillators. The study used scintillator sensors to detect radiation, arduino as a programming source, bluetooth HC-05 as digital communication between hardware and PC, PC / Delphi as display. This research design is Pre-Experimental with After Only Design research type. Where the author takes data compared to standard tools then analyzes the data. The results showed the largest error at a distance of 120cm with a 90 KV setting of 43.52%. And the smallest error is at a distance of 120cm with a 50 KV setting of 0.07%.
Pemantauan Infus Pump Secara Wireless Menggunakan Modul RF HC-11 Decoriza Kurnia Abadi; Abd. Kholiq; Sumber Sumber; Sari Luthfiyah
Jurnal Teknokes Vol 12 No 2 (2019): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (444.058 KB)

Abstract

Infuse pump suatu peralatan kedoteran dengankategori life support yang berfungsi untuk memasukan cairan atau obat yang dibutuhkan oleh pasien dengan flow rate ( ml/h) yang terkontrol.Modul ini menggunakan driver motor L298N sebagai pengendali motor stepper. Pemilihan setting infuse pump yaitu setting volume dari pemilihan 100 ml sampai 500 ml dan setting kecepatan dari pemilihan 30 ml/jam, 60 ml/jam, dan 90 ml/jam. Penulis menggunakan mikrokontrollerAtmega 328 sebagai pengontrol tetesan per menit, volume, dan kecepatan Alat ini juga dilengkapi monitoring volume, tpm dan kecepatan pada PC berbasis wireless menggunakan HC-11 sebagai pengiriman dari modul ke PC .Alat ini dilengkapi dengan Lock door.Pengolahan data lajualiranpada IDA dari infus di dapatkan hasil error terendah pada setting 30 ml/jam yaitusebesar -5,97%. Hasil error untuk perhitunganmodul yang tertinggi pada setting 30 ml/jam yaitu sebesar 32% dan manual pada setting 60 yaitu 23%.
Rancang Bangun Electrosurgery Unit (Pure Cut) Mode Bipolar M. Aldi Bahij Faroby; Her Gumiwang Ariswati; Torib Hamzah; Sari Luthfiyah
Jurnal Teknokes Vol 12 No 2 (2019): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (543.238 KB)

Abstract

Penelitian ini bertujuan untuk membuat sebuah modul Electrosurgery unit (Pure Cut) mode bipolar. Adapun yang menjadi penulis melatar belakangi pembuat modul ini karena peralatan bedah yang berfungsi melakukan pembedahan dengan meminimalisir darah yang dikeluarkan oleh pasien, dengan memanfaatkan frekuensi tinggi dan arus listrik untuk memotong (cutting), mengental (coagulation), dan pengeringan jaringan (fulguration). Namun pada penelitian ini menggunakan mode cutting saja dengan dua pemilihan daya dan frekuensi dapat diatur dengan rentan 100 kHz sampai 300 kHz. Penelitian ini mendapatkan hasil dengan daya terendah 6,5 Watt dan daya tertinggi 38,6 Watt, yang mempengaruhi hasil ukur daya tegangan, arus, hambatan, dan frekuensi. Bipolar electrosurgery adalah salah satu alat bedah yang paling umum digunakan untuk seluruh pembedahan pada titik tertentu, berdasarkan hal tersebut perlu adanya alat bedah dengan mode bipolar untuk pembedahan minor misal pada organ tubuh tertentu yang membutuhkan lingkup kecil pada manusia dengan menggunakan frekuensi tinggi.
Electrocardiograph Simulator Berbasis Mikrokontroler I Dewa Gede Budi Whinangun; Andjar Pudji; M. Ridha Makruf; Bedjo Utomo; Sari Luthfiyah
Jurnal Teknokes Vol 12 No 1 (2019): April
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (895.508 KB)

Abstract

Electrocardiograph (ECG) menjadi salah satu ilmu diagnostik yang sering dipelajari dalam mendiagnosis dan untuk terapi penyakit jantung. Mengingat pentingnya alat ECG recorder, maka diperlukan pengecekan fungsi alat ECG recorder yaitu dengan cara melakukan prosedur kalibrasi alat menggunakan Phantom ECG. Tujuan dari penelitian ini adalah membuat ECG Simulator untuk alat ECG 12 channel yang meliputi lead I, lead II, lead III, aVR, aVF, aVL, V1, V2, V3, V4, V5, dan V6 dan melengkapinya dengan selektor pemilihan sensitivitas serta menggunakan. Metode pembentukan sinyal jantung menggunakan DAC tipe MCP 4921 dengan mikrokontroler Atmega2560 dan untuk tampilan pengaturanya menggunakan LCD Karakter 2x16. Berdasarkan hasil pengukuran didapat nilai tingkat kesalahan sebesar 0.187% sensitivitas 0.5mV dan 0.327% sensitivitas 1.0mV pada setting BPM 30, didapat nilai tingkat kesalahan sebesar 1.173% sensitivitas 0.5mV dan 1.060% sensitivitas 1.0mV pada setting BPM 60, didapat nilai tingkat kesalahan sebesar 0.797% sensitivitas 0.5mV dan 0.739% sensitivita 1.0mV pada setting BPM 120, didapat nilai tingkat kesalahan sebesar 0.269% sensitivitas 0.5mV dan 0.381% sensitivitas 1.0mV pada setting BPM 180 dan 0.010% sensitivitas 0.5mV dan 0.616% sensitivitas 1.0mV pada setting BPM 240. Modul ECG Simulator dilengkapi dengan fitur charge baterai dan biaya pembuatan yang lebih murah dibandingkan dengan alat pabrikan.
INCU Analyzer for Infant Incubator Based on Android Application Using Bluetooth Communication to Improve Calibration Monitoring Vijay Anant Athavale; Abhilash Pati; A K M Bellal Hossain; Sari Luthfiyah; Triwiyanto Triwiyanto
Jurnal Teknokes Vol 15 No 1 (2022): March
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v15i1.1

Abstract

Worldwide, over 4 million babies die within a month of birth each year. Of these, 3.9 million are in developing countries. A proportion approximately 25% of these deaths are due to complications of premature birth, most commonly inadequate thermoregulation, water loss, and neonatal jaundice. An infant incubator provides stable temperature, relative humidity, and airflow values. A periodical calibration should be applied on infant incubator to monitor the functionality. The study aims to develop a calibration device that measures temperature, humidity, airflow, and noise in the baby incubator based on an Android application with Bluetooth communication to improve the calibration monitoring process. This is to achieve a better performance of the conventional INCU analyzer. The contribution of this research is that the values of the temperature, humidity, airflow, and noise can be displayed on both devices, the INCU analyzer machine, and mobile phone; thus, the user can monitor the measurement activities wirelessly. Furthermore, the statistical calculation for all measurements can be saved on a mobile phone device. The main design consists of temperature sensor LM35, humidity sensor DHT22, airflow sensor MPX5010DP, an analog signal conditioning circuit, an Arduino Mega microcontroller, Bluetooth module HC05, and Android mobile phone. The resulting design was compared to the standard or calibrator INCU analyzer machine (Fluke Biomedical INCU II). This study found that the smallest error is -1.72%°C, -0.106 % RH, -1.727% dB, and <0.1% m/s for temperature, humidity, noise, and airflow parameters, respectively. After the evaluation process, this device can be used as an INCU analyzer to calibrate the infant incubator.
Measuring Respiration Rate Via Android Shofiyah Shofiyah; I Dewa Gede Hari Wisana; Triwiyanto Triwiyanto; Sari Luthfiyah
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 1 (2019): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (733.523 KB) | DOI: 10.35882/ijeeemi.v1i1.4

Abstract

Abstract-Respiratory rate is the total number of breath or breathing cycle, which occurs every minute. Abnormal respiratory rate is a sensitive indicator for danger patients requiring medical treatment immediately. The objective of the study is to design respiration rate monitor via Anroid mobile phone. In this study, we used flex sensors to detect the respiration rate. The flex sensors was placed in the human stomach diaphragm which detects the changes in the human stomach diaphragm during breathing. The measurement results are displayed on the liquid crystal display (LCD) 2 x 16. The data will be sent via a Bluetooth connection to the android to display the values ​​and graphs. The comparison between the design and standart showed that the maximum erros is 4.69% while the minimum error is 1.52%. The average error for all measurement is 2.83%. It can be concluded that the tool wear is eligible because it is still below the minimum threshold of 10% error.
Design of Two Channel Infusion Pump Analyzer Using Photo Diode Detector Syaifudin Syaifudin; Muhammad Ridha Mak’ruf; Sari Luthfiyah; Sumber Sumber
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i2.5

Abstract

In the medical world, patient safety is a top priority. The large number of workloads and the frequency of using the devices in the long run will affect the accuracy and accuracy of the tool. If the flow rate and volume of the syringe pump or infusion pump given to the patient are not controlled (overdose or the fluid flow rate is too high) it can cause hypertension, heart failure or pulmonary edema. Therefore, it is necessary to have a calibration, which is an application activity to determine the correctness of the designation of the measuring instrument or measuring material. The purpose of this research is to make a two channel infusion device analyzer using a photodiode sensor. The contribution of this research is that the system can display three calibration results in one measurement at the same setting and can calibrate 2 tools simultaneously. The design of the module is in the form of an infrared photodiode sensor for reading the flowrate value. This study uses an infrared photodiode sensor for channels 1 and 2 installed in the chamber. This study uses a flow rate formula that is applied to the water level system to obtain 3 calibration results. Infrared photodiode sensor will detect the presence of water flowing in the chamber from an infusion or syringe pump. Then the sensor output will be processed by STM32 and 3 calibration results will be displayed on the 20x4 LCD. This tool has an average error value on channel 1 of 3.50% and on channel 2 of 3.39%. It can be concluded that the whole system can work well, the placement and distance between the infrared photodiodes also affects the sensor readings
Vital Signs Monitoring Device with BPM and SpO2 Notification Using Telegram Application Based on Thinger.io Platform Sari Luthfiyah; Elga Rahmah Ramadhani; Tri Bowo Indrato; Anan Wongjan; Kamilu O. Lawal
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 1 (2022): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i1.1

Abstract

Vital signs are an important component of monitoring the adult or child patient's progress during hospitalization, as they allow for the prompt detection of delayed recovery or adverse events. Vital signs are measured to obtain basic indicators of a patient's health status. The most common intervention performed in hospital medicine is a measurement of vital signs, and these traditionally consist of blood pressure, temperature, pulse rate, and respiratory rate. Advanced monitoring systems incorporate a balanced combination of clinical and technological aspects to give an innovative healthcare outcome. Remote patient monitoring systems are rapidly becoming the core of healthcare deliveries. The paradigm shifted from traditional and manual recording to computer-based electronic records and further to smartphones as versatile and innovative healthcare monitoring systems. This research aims to design a Vital Sign Monitoring device for BPM and SpO2 Parameters with Notifications through the IoT-Based Telegram application. This device can monitor vital signs, especially BPM and SPO2, wherever the patient is and whenever so that doctors or health workers and patients can find out their health condition. This display can be viewed via web thinger.io, then forwarded to telegram if an abnormal patient condition is found, and there is an indicator light that will light up differently for each condition. This study uses the MAX30100, which is a digital sensor to detect oxygen saturation and heart rate. The results of this study have succeeded in displaying data on the IoT web and sending notifications to the Telegram application. And also, the resulting data has an error that does not exceed the allowable limit according to each parameter. The difference between heart rate readings and oxygen saturation values ​​on the device and patient monitor is 0.015% for heart rate and 0.01% for oxygen saturation. This study indicates that it is time to monitor vital signs that can be seen remotely and have a system that is an inexpensive and easy-to-operate device for health workers without interfering with activities of daily living.