Claim Missing Document
Check
Articles

Found 19 Documents
Search

Embedded system for upper-limb exoskeleton based on electromyography control Triwiyanto Triwiyanto; I Putu Alit Pawana; Bambang Guruh Irianto; Tri Bowo Indrato; I Dewa Gede Hari Wisana
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.11670

Abstract

A major problem in an exoskeleton based on electromyography (EMG) control with pattern recognition-based is the need for more time to train and to calibrate the system in order able to adapt for different subjects and variable. Unfortunately, the implementation of the joint prediction on an embedded system for the exoskeleton based on the EMG control with non-pattern recognition-based is very rare. Therefore, this study presents an implementation of elbow-joint angle prediction on an embedded system to control an upper limb exoskeleton based on the EMG signal. The architecture of the system consisted of a bio-amplifier, an embedded ARMSTM32F429 microcontroller, and an exoskeleton unit driven by a servo motor. The elbow joint angle was predicted based on the EMG signal that is generated from biceps. The predicted angle was obtained by extracting the EMG signal using a zero-crossing feature and filtering the EMG feature using a Butterworth low pass filter. This study found that the range of root mean square error and correlation coefficients are 8°-16° and 0.94-0.99, respectively which suggest that the predicted angle is close to the desired angle and there is a high relationship between the predicted angle and the desired angle.
Phototherapy Radiometer with AS7262 Sensor Ichwan Syahrul Bahtiar; Andjar Pudji; I Dewa Gede Hari Wisana
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 1 (2019): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v1i1.8

Abstract

The phototherapy is a device used in hyperbilirubinemia therapy by using blue light radiation with ranges between 425nm-475nm. The effectiveness of hyperbilirubinemia therapy depends on the amount of energy emitted by light which expressed in μW/cm2. The purpose of this study is to develop a low-cost and high accuracy Phototherapy radiometer. Measurement of blue light irradiance using the AS7262 sensor which can measure the irradiance of visible light with a wavelength of 450nm, 500nm, 550nm, 570nm, 600nm, 650nm with relative responsiveness of 1 time at each wavelength. SD card memory is used to save measurement data of irradiance so that it can be processed later. Based on the blue light irradiance data collected the smallest error value is 0,40% at a distance of 10cm while the biggest error value is 9,01% at a distance of 30cm. After testing the entire system, the device can be used according to its function and purpose.
Baby Incubator Monitoring Center for Temperature and Humidity using WiFi Network Sari Luthfiyah; Furi Kristya; I Dewa Gede Hari Wisana; Mohseena Thaseen
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i1.2

Abstract

Monitoring the condition of premature babies inside the baby incubator is very necessary. Babies who are born prematurely with a birth age of less than 38 weeks have a higher risk of death and difficulty to adapt outside the womb due to immaturity of the organ system. Premature babies need continuous monitoring by the nurse to find out the baby's body condition remains stable in temperature and humidity to match the conditions in the womb. The purpose of this research to develop a baby incubator temperature and humidity monitoring system quickly and practically. As technology develops, the monitoring process that was initially carried out by looking directly at the baby incubator display, now developed with various innovations that make it easier to monitor premature babies. The baby incubator temperature and humidity monitoring center module via the WiFi network uses a temperature sensor and DHT 22 which will be sent via WiFi ESP 32 and the values ​​obtained will be displayed on the nextion tft display. Based on the measurement results obtained the largest temperature error value of 2.083% at the incubator client 1 temperature at the measurement point 32 ° C. The results showed that the device has an average error suitable for use, because based on ecri 415-20010301-01, the maximum allowable error limit is ± 1 ° C. The results of this study can be implemented to make it easier for nurses to monitor premature babies to avoid neglect.
Pemantauan SpO2 Melalui Aplikasi Android di Mobile Phone Veriko Yonanto; I Dewa Gede Hari Wisana; Triana Rahmawati
Jurnal Teknokes Vol 12 No 2 (2019): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (774.073 KB)

Abstract

Penyakit Paru Obstruktif Kronik (PPOK) adalah penyakit obtruksi jalan napas karena bronchitis kronik atau emfisema. Salah satu penyebab PPOK adalah merokok. Monitoring saturasi oksigen digunakam untuk mengetahui nilai SPO2 selama satu menit pada perokok pasif maupun aktif yang bertujuan untuk monitoring kondisi Saturasi Oksigen pasien rawat jalan dan jika terjadi nilai yang tidak normal dapat dijadikan sebagai peringatan awal terjadinya risiko dari Pola Hidup Merokok. Tujuan dari penelitian ini membuat alat monitoring SPO2 via Android menggunakan sensor MAX30100. Sensor MAX30100 bekerja berdasarkan penyerapan cahaya IR dan LED yang masuk ke sensor, data dari sensor MAX30100 masuk ke pin 12C pada minimum sistem arduino, kemudian diolah sehingga menghasilkan presentase nilai SPO, yang kemudian ditampilkan pada LCD 16x2 dan Android dengan menggunakan Bluetooth sehagai media pengiriman. Pada peneliti sebelumnya dihasilkan error sebesar 0,6% dan hasil dari penelitian sekarang dengan melakukan pendataan 5 responden dengan 6 kali pengambilan data di dapatkan error sebesar 0.27%.
Pemantauan Respiratory Secara Wireless Berbasis Komputer Siti Fathul Jannah; I Dewa Gede Hari Wisana; Priyambada C. Nugraha
Jurnal Teknokes Vol 14 No 1 (2021): April
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v14i1.1

Abstract

Pernapasan merupakan bagian terpenting manusia untuk hidup. Perubahan nilai oksigen dan laju pernapasan secara mendadak dapat berdampak negatif dan dapat membahayakan jiwa. Respiration Rate<12 yang mengarah ke bradypnea sementara obstruksi jalan nafas seperti asma, emfisema dan COPD akan meningkatkan Respiration Rate, Respiration Rate > 30 menyebabkan takipnea. Oleh karena itu, pengukuran Respiration Rate menjadi sangat penting secara klinis. Tujuan penelitian adalah dibuatnya alat Wireless Respiratory Monitoring untuk memudahkan pemantaun kondisi pernapasan manusia. Metode penelitian menggunakan perubahan tekanan sensor piezoelectric dari pergerakan mengembang dan mengempisnya perut pada saat bernafas. Perubahan tekanan tersebut mengakibatkan perubahan nilai tegangan yang dihasilkan oleh sensor piezoelectric. Hasil pembacaan nilai tegangan tersebut akan di olah pada arduino untuk dihitung nilai laju pernapasan dan akan dikirimkan secara wireless dengan Bluetooth HC-05 pada PC. Pengiriman tersebut dilakukan setiap satu menit dan ditampilkan pada Excel. Tampilan pada PC berupa kolom nilai laju pernapasan dan kolom waktu serta plotting grafik nilai respirasi terhadapt waktu secara otomatis. Berdasarkan hasil pengukuran dan pengujian modul dapat menampilkan nilai respirasi dan plotting grafik otomatis setiap satu menit pada PC melalui pengiriman Bluetooth tanpa adanya kehilangan data. Ketika pengukuran dilakukan dalam rangkaian Filter LPF frekuensi yang dihasilkan adalah frekuensi pernapasan yaitu 1Hz yang menunjukkan bahwa rangkaian filter telah berfungsi dengan baik. Pengukuran nilai respirasi dilakukan langsung pada tubuh manusia dan didapatkan hasil rata-rata nilai respirasi 14-17 kali permenit pada pembacaan modul alat dan respirasi normal manusia yaitu dari range 12-20 kali permenit. Pengujian dilakukan pada Bluetooth, Bluetooth dapat melakukan pengiriman pada jarak 1-5 meter tanpa adanya kehilangan data. Breathing is the most important part of human life. Changes in oxygen values ​​and the rate of breathing suddenly can have a negative impact and can be life-threatening. Respiration Rate <12 which leads to bradycardia while airway obstruction such as asthma, emphysema and COPD will increase the Respiration Rate, Respiration Rate> 30 causing tachypnea. Therefore, measurement of Respiration Rate is very important clinically. The purpose of this study was to create a Wireless Respiratory Monitoring tool to facilitate monitoring of human respiratory conditions. The research method uses changes in the piezoelectric sensor pressure of the expanding and deflating movements of the stomach during breathing. The change in pressure results in a change in the value of the voltage produced by the piezoelectric sensor. The results of reading the voltage value will be processed on Arduino to calculate the respiratory rate and will be sent wirelessly with Bluetooth HC-05 on a PC. The sending is done every minute and displayed in Excel. The display on the PC is a column of respiratory rate and time column and plotting graph of respiration value with time automatically. Based on the measurement and testing results the module can display respiration values ​​and automatic graph plotting every one minute on a PC via Bluetooth sending without any loss of data. When the measurements are made in the LPF Filter circuit the resulting frequency is a respiratory frequency of 1Hz which indicates that the filter circuit is functioning properly. Measurement of respiration value is carried out directly on the human body and the results obtained an average respiration value of 14-17 times per minute on the reading of the instrument module and normal human respiration that is from a range of 12-20 times per minute. Testing is done on Bluetooth, Bluetooth can send at a distance of 1-5 meters without data loss.
Monitoring SpO2 Secara Wireless Berbasis Computer Firda Ryan Nur Fadhilah; I Dewa Gede Hari Wisana; Priyambada C. Nugraha
Jurnal Teknokes Vol 14 No 1 (2021): April
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v14i1.4

Abstract

Penyakit Paru Obstruktif Kronis (PPOK) sangat kurang dikenal di masyarakat, WHO menyebutkan PPOK merupakan penyebab kematian ke-4 di dunia. Penyakit ini dapat menyebabkan kesakitan kronik dan kematian individu di seluruh dunia setiap 10 detik. Gejala PPOK yaitu meningkatnya frekuensi pernapasan (RR) dan penurunan kadar saturasi oksigen (SpO2) dalam darah. Tujuan dari penelitian ini adalah mendisain sebuah alat yang dapat memantau kondisi saturasi oksigen dalam darah manusia secara real time. Kontribusi dalam penelitian ini adalah sistem yang menunjukkan data hasil pengukuran yang terus ter-update dalam bentuk nilai dan grafik SpO2 yang menunjukkan kestabilan nilai SpO2 terhadap waktu. Agar alat monitoring ini lebih mudah digunakan maka dibuatlah alat dengan pemantauan secara real time dengan dilengkapi penyimpanan data selama proses pemantauan saturasi oksigen pada pasien. Perancangan alat ini menggunakan finger sensor untuk mendeteksi kadar saturasi oksigen dalam darah yang memiliki keluaran berupa analog kemudian dikondisikan di rangkaian PSA (Pengkondisian Sinyal Analog). Output PSA kemudian diolah di ATmega328P dan dikirimkan via Bluetooth HC-05 ke PC (tampilan Excel). Hasil pengukuran yang diperoleh adalah persentase SpO2 normal pada setiap responden dengan dilakukan masing-masing 5 kali pengukuran secara wireless. Penelitian ini dapat diimplementasikan pada pasien dengan PPOK sehingga kondisi pasien dapat terus terpantau melalui nilai dan grafik yang disimpan dan ditampilkan pada PC. Chronic Obstructive Pulmonary Disease (COPD) is very little known in the community, WHO says COPD is the 4th leading cause of death in the world. This disease can cause chronic pain and death of individuals around the world every 10 seconds. Symptoms of COPD include increased respiratory frequency (RR) and decreased oxygen saturation (SpO2) levels in the blood. The purpose of this study is to design a device that can monitor oxygen saturation conditions in human blood in real time. The contribution in this study is a system that shows measurement data that is constantly updated in the form of SpO2 values ​​and graphs showing the stability of the SpO2 values ​​over time. In order to make this monitoring tool easier to use, a real-time monitoring tool has been made, equipped with data storage during the process of monitoring oxygen saturation in patients. The design of this tool uses a finger sensor to detect the level of oxygen saturation in the blood which has an analog output then is conditioned in the PSA (Analog Signal Conditioning) circuit. The PSA output is then processed in ATmega328P and sent via Bluetooth HC-05 to a PC (Excel display). The measurement results obtained are the percentage of normal SpO2 on each respondent by each of the 5 measurements done wirelessly. This research can be implemented in patients with COPD so that the patient's condition can continue to be monitored through values ​​and graphs that are stored and displayed on a PC.
Pemantauan Apnea Berbasis Internet of Things dengan Notifikasi di Mobilephone Muhammad Fuad Nurillah; Bambang Guruh Irianto; I Dewa Gede Hari Wisana
Jurnal Teknokes Vol 13 No 2 (2020): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penderita gangguan henti napas pada saat tidur (sleep apnea) semakin meningkat, hampir lebih dari 80% orang menderita gangguan ini tidak terdiagnosis. Gejala dari sleep apnea yaitu terjadinya henti napas selama lebih dari 10 detik. Tujuan dari penelitian ini adalah merancang alat monitor apnea agar dapat mendeteksi gejala sleep apnea. Kontribusi dalam penelitian ini adalah sistem monitoring atau pemantauan jarak jauh sehingga orang lain dapat memantau kondisi pasien meskipun tidak sedang mendampinginya. Agar dapat mempermudah proses monitoring dan pendiagnosaan pasien maka dibuatlah alat apnea monitor berbasis Internet of Things dengan dilengkapi notifikasi pada android sehingga dapat dengan cepat dilakukannya penanganan pada pasien. Perancangan alat ini menggunakan piezoelektrik sebagai sensor pendeteksi pernapasan yang diletakkan pada bagian perut pasien. Output sensor berupa tegangan kemudian dikondisikan pada rangkaian PSA. Menggunakan mikrokontroler ESP32 sebagai pemrosesan sinyal yang dibentuk oleh rangkaian PSA dan diolah menjadi nilai respirasi. Nilai respirasi kemudian dikirimkan ke perangkat android menggunakan jaringan Wi-Fi dan ditampilkan pada aplikasi Blynk. Apabila terdeteksi kejadian henti napas selama lebih dari 10 detik maka alat akan menyalakan indikator dan mengaktifkan notifikasi pada android. Penelitian ini melakukan pengukuran amplitudo sinyal respirasi dan nilai respirasi terhadap responden dan juga melakukan pengujian pengiriman jarak jauh menggunakan jaringan Wi-Fi. Hasil pengujian pada penelitian ini alat dapat mengirimkan data dengan baik dan tanpa loss data dengan jarak 5 meter dalam ruangan dan 10 meter berbeda ruangan. Alat ini dapat diimplementasikan pada proses monitoring pasien sehingga dapat mengurangi penderita gangguan sleep apnea. Patients with breathing problems during sleep (sleep apnea) are increasing, almost more than 80% of people suffering from this disorder are not diagnosed. Symptoms of sleep apnea include breathing for more than 10 seconds. The purpose of this study is to design apnea monitoring devices to detect sleep apnea symptoms. The contribution in this study is a monitoring system or remote monitoring so that others can monitor the condition of the patient even though not accompanying him. In order to simplify the process of monitoring and diagnosing patients, an apnea monitor based on the Internet of Things is made with notifications on android so that treatment can be quickly performed on patients. The design of this device uses piezoelectric as a respiratory detection sensor which is placed on the patient's abdomen. The sensor output in the form of voltage is then conditioned on the PSA circuit. Using the ESP32 microcontroller as signal processing which is formed by the PSA circuit and processed into respiration values. Respiration values ​​are then sent to the Android device using a Wi-Fi network and displayed on the Blynk app If a stop breathing event is detected for more than 10 seconds, the device will turn on the indicator and activate the notification on the android. The test results in this study the tool can send data properly and without loss data with a distance of 5 meters in a room and 10 meters in a different room. This tool can be implemented in the patient monitoring process so that it can reduce sufferers of sleep apnea disorders.
Smartphone Based Respiratory Signal monitoring and Apnea detection Via Bluetooth Comunication Ulil Albhi Ramadhani; I Dewa Gede Hari Wisana; Priyambada Cahya Nugraha
Jurnal Teknokes Vol 14 No 2 (2021): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v14i2.1

Abstract

Patients with sleep apnea (sleep apnea) are increasing, almost more than 80% of people with this disorder are undiagnosed. Symptoms of sleep apnea are stopping breathing for more than 10 seconds. The purpose of this study was to design an apnea monitor device in order to detect symptoms of sleep apnea. The contribution in this study is a monitoring system or remote monitoring so that other people can monitor the patient's condition even though they are not accompanying him. In order to facilitate the process of monitoring and diagnosing patients, a Apnea Monitor Based on Bluetooth with Signal Display in Android with a delivery system via a bluetooth network that displays respiratory signals on Android so that patients can be treated quickly when breathing stops (apnea) . The design of this device uses a piezoelectric sensor to detect breathing which is placed on the patient's abdomen. The sensor output in the form of voltage is then conditioned on the PSA circuit. Using the ESP32 microcontroller as a signal processing which is formed by the PSA circuit and processed into a signal and respiration value. The respiration signal and value are then sent to the android device using the Bluetooth network. When a respiratory arrest is detected for more than 10 seconds, the device will turn on the indicator and buzzeer on the device and also send a warning to the Android or Roboremo application in the form of a notification "Apnea!" and a beep sound as a reminder when there is apnea in the patient so that the user can immediately take action on the patient. The test in this study there are 5 respondents who have been tested on this module by comparing the respiration rate per minute with the Patient Monitor, and the test results in this study obtained the measurement and calculation results, the lowest error value was 1.58% and the highest error value was 2.9%, the module can also transmit data well and without data loss with a distance of 10 meters in the room and 5 meters in different rooms. This module can be implemented in the patient monitoring process so that it can reduce sufferers of sleep apnea disorders. the module can also transmit data well and without data loss with a distance of 10 meters in the room and 5 meters in different rooms. This module can be implemented in the patient monitoring process so that it can reduce sufferers of sleep apnea disorders. the module can also transmit data well and without data loss with a distance of 10 meters in the room and 5 meters in different rooms. This module can be implemented in the patient monitoring process so that it can reduce sufferers of sleep apnea disorders.
Smart-band BPM and Temperature Based on Android Using Wi-Fi Communication Pandu Arsy Filonanda; I DEWA GEDE HARI WISANA; PRIYAMBADA CAHYA NUGRAHA
Jurnal Teknokes Vol 14 No 2 (2021): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v14i2.3

Abstract

Monitoring of patients is an integral part of health-care system, both in the hospital and at home. Monitoring devices are useful to monitor a person's health. Monitoring is necessary in case of symptoms of a disease that must be acted quickly to prevent the patient's condition from worsening. One way of monitoring patients' specifications is shown by their BPM value and temperature. The purpose of this study is the design of devices on a patient's wrist that can monitor BPM and his body temperature in real time and are not affected by distance. This research contribution is a system that can provide bradycardia indicators and tachycardia for BPM while hyperthermia and hypothermia for temperature. For a monitoring device to be more practical and efficient for use, it has a device with real time monitoring and a small frame of bracelets and alerts phones and emails during abnormal conditions. The design of the device uses the SEN0203 sensors as a BPM sensor that has analog and digital outputs, as well as MLX90614 sensors that have a digital output, and then data will be processed and shown live to oled ESP333TTGO and data sent to the blynk application on the phone aided by ESP32TTGO as a wifi module. The BPM has the smallest 0.1% error and the largest of 1.09% whereas the temperature has the smallest 0.19% and the largest of 1.63%. These results can be redeveloped on monitor patients to increase the efficiency of the remote monitoring system with alert conditions of patients at an abnormal time via mobile phones and emails.
Apnea Monitor based on Bluetooth with Android Interface I Dewa Made Wirayuda; I Dewa Gede Hari Wisana; Priyambada Cahya Nugraha
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 2 (2019): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v1i2.1

Abstract

Apnea monitor is a device that is used to give a warning if there is stop breathing. Stop breathing while sleeping is one form of obstructive sleep apnea. This cessation of breath cannot be underestimated, this is related to the main risk factors for health implications and increased cardiovascular disease and sudden death. The purpose of this study is to design an apnea monitor with the Android interface. This device allows the users to get how many times sleep apnea happens while sleeping and got data to analysis before continuing with a more expensive and advanced sleep test. This device used a flex sensor to detect the respiration rate, the sensor placed on the abdomen or belly so it can measure expand and deflate while breathing. The microcontroller uses an Arduino chip called AT-Mega328. Bluetooth HC-05 used to send respiration data to Android, MIT app inventor used for the android programmer, and on the android, there are plotting of respiration value and when the device detected apnea so the android also gives a warning to the user. Based on the results of testing and measurement then compare with another device, the results of the average% error were 3.61%. This apnea monitor design is portable but there are needs some improvement by using another sensor for detected respiration and using a module other than Bluetooth.