Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Engineering and Technological Sciences

Viscosity Measurement of Blended Patchouli Oil at Atmospheric Pressure and Room Temperature Yusibani, Elin; Woodfield, Peter Lloyd; Ardiah, Lena; Surbakti, Muhammad Syukri; Rahmi, Rahmi
Journal of Engineering and Technological Sciences Vol 51, No 5 (2019)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (310.369 KB) | DOI: 10.5614/j.eng.technol.sci.2019.51.5.6

Abstract

Patchouli is an essential oil used in perfumes, cosmetics, soaps, insect repellents and also a candidate for biodiesel from non-edible oil. Patchouli oil from Aceh Province, Indonesia, is generally produced using a distillation process. The relationships between physical properties, i.e. the viscosity and quality, of patchouli oil from Aceh Province and blends with other oils, were investigated. The mixture oils used were palm oil, kerosene and lubricant oil SAE 40. The mixture compositions were 100:0; 75:25; 50:50; 25:75 and 0:100 (v/v). It was found that mixing palm crude oil (25%) or lubricant oil (25%) with patchouli oil increased the viscosity by about 41% and 72%, respectively, compared with pure patchouli oil. A 53% decrease in viscosity was observed when the patchouli oil blend contained 25% kerosene. Natural variation in patchouli alcohol (PA) and iron (Fe) content in the patchouli oil sample was found to increase the value of viscosity by up to 1.5%.
Viscosity Measurement of Blended Patchouli Oil at Atmospheric Pressure and Room Temperature Elin Yusibani; Peter Lloyd Woodfield; Lena Ardiah; Muhammad Syukri Surbakti; Rahmi Rahmi
Journal of Engineering and Technological Sciences Vol. 51 No. 5 (2019)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2019.51.5.6

Abstract

Patchouli is an essential oil used in perfumes, cosmetics, soaps, insect repellents and also a candidate for biodiesel from non-edible oil. Patchouli oil from Aceh Province, Indonesia, is generally produced using a distillation process. The relationships between physical properties, i.e. the viscosity and quality, of patchouli oil from Aceh Province and blends with other oils, were investigated. The mixture oils used were palm oil, kerosene and lubricant oil SAE 40. The mixture compositions were 100:0; 75:25; 50:50; 25:75 and 0:100 (v/v). It was found that mixing palm crude oil (25%) or lubricant oil (25%) with patchouli oil increased the viscosity by about 41% and 72%, respectively, compared with pure patchouli oil. A 53% decrease in viscosity was observed when the patchouli oil blend contained 25% kerosene. Natural variation in patchouli alcohol (PA) and iron (Fe) content in the patchouli oil sample was found to increase the value of viscosity by up to 1.5%.
Physical and Chemical Properties of Indonesian Coffee Beans for Different Postharvest Processing Methods Elin Yusibani; Peter Lloyd Woodfield; Adi Rahwanto; Muhammad Syukri Surbakti; Rajibussalim Rajibussalim; Rahmi Rahmi
Journal of Engineering and Technological Sciences Vol. 55 No. 1 (2023)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2023.55.1.1

Abstract

The purpose of this study was to identify the physical and chemical properties of Indonesian coffee beans for different postharvesting methods after being roasted. Several types of Indonesian export coffee, i.e., Gayo Luwak coffee, Wamena coffee, Toraja coffee, Gayo coffee, Flores coffee and Kintamani coffee, were used in the present study. Each coffee has its own aroma and taste according to the location, soil type, and land elevation. The roasting process started with preheating the roasting machine, after which the samples were roasted for about 15 minutes at 215℃ to obtain the medium-to-dark (MTD) roasting level. The physical properties measured included density, mass loss, porosity, water content, and morphology using a scanning electron microscope. The transmittance spectrum was observed by Fourier transform infrared spectroscopy (FTIR). The physical properties of the coffee were successfully measured. The bulk density varied from 0.6 to 0.7 g/cm3, and particle density was about 0.9 g/cm3 for green beans. The roasting process reduced the bulk and particle density to 0.3 g/cm3 on average and 0.8 g/cm3, respectively. The fully-washed condition gave an overlapping spectrum for green and roasted beans, which shows that the roasting process did not affect the spectrum. The results can be used to study the coffee quality resulting from different postharvest processing methods.