Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Mechanical Engineering, Science, and Innovation

Influence of Fluid Inflow Rate on Performance Effectiveness of Shell and Tube Type Heat Exchanger Adinda Shalsa Bellabunda Wardhani; Alifta Titania Labumay; Erlinda Ningsih
Journal of Mechanical Engineering, Science, and Innovation Vol 2, No 1 (2022): (April)
Publisher : Mechanical Engineering Department - Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (604.068 KB) | DOI: 10.31284/j.jmesi.2022.v2i1.2993

Abstract

In industrial processes, heat exchangers are needed to transfer a certain amount of heat energy from the system to the environment. The research object observed using a heat exchanger type 1- 2 shell and a tube was water in hot and cold fluids. It aimed to determine the relationship between hot and cold fluids and the heat transfer coefficient, fouling factor, and tool efficiency. The research method varied the hot water by 50, 70, 90, 100 mL/s and the cold water by 20, 40, 60, 80 mL/s. After getting the data for each fluid's inlet and outlet temperatures, the effectiveness analysis was calculated. The research results on the hot fluid variable demonstrated that the more the fluid was flowing into the shell, the higher the heat transfer coefficient, heat transfer velocity, and average effectiveness. Meanwhile, the fouling factor tended to decrease along with the increasing hot fluid. The cold fluid variable, the higher the cold fluid flows into the tube, the higher the heat transfer coefficient and the average heat transfer velocity. Furthermore, the fouling factor and effectiveness tended to decrease along with the increasing cold fluid flow.
Simulation Performance Analysis of Shell and Tube Heat Exchanger Using Comsol Multiphysics 5.6 Software Yety Setyo Ningrum; Ririn Martin Erinda; Made Arsana; Erlinda Ningsih; Anthony Francis Rajan
Journal of Mechanical Engineering, Science, and Innovation Vol 3, No 1 (2023): (April)
Publisher : Mechanical Engineering Department - Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jmesi.2023.v3i1.3544

Abstract

A heat exchanger is a very important tool in the fields of engineering and industry, especially in energy conversion. This study was aimed at determining the effects of hot and cold fluid flow velocity on the overall heat transfer coefficient (UA) and effectiveness in shell and tube heat exchangers using COMSOL Multiphysics 5.6 software. Another research objective was to observe the phenomena of heat transfer in the shell and tube type heat exchanger at each hot and cold fluid flow velocity. The heat exchanger was designed with a total length of 800 mm and equipped with 18 tubes having a diameter of 2 in and a length of 600 mm. The material used for tube and shell construction was stainless steel. A simulation was carried out using COMSOL Multiphysics 5.6 software to determine the performance of the designed heat exchanger. The results of this simulation indicated that the effects of hot and cold fluid velocity were directly proportional to the value of UA. The heat exchanger have result the smallest UA value of 80.062 W/m2.K, meanwhile the highest UA value of 174.950 W/m2.K. The heat exchanger have result the minimum effectiveness value of 22.305% and the maximum effectiveness value of 52,047%. The second result is phenomenon stating that the surface temperature of the shell and tube would change along with the increasing velocity of both hot and cold fluids, signifying the heat transfer such as conduction and convection from the fluid to the shell or tube.