Claim Missing Document
Check
Articles

Found 8 Documents
Search

UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE Subyakto, Subyakto; Masruchin, Nanang; Prasetiyo, Kurnia Wiji; Ismadi, Ismadi
Indonesian Journal of Forestry Research Vol 10, No 1 (2013): Journal of Forestry Research
Publisher : Secretariat of Forestry Research and Development Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sisal (Agave sisalana) as a perennial tropical plant grows abundantly in Indonesia. Its fibers can be used as the reinforcement agent of biocomposite products. Utilization of sisal as natural fiber has some notable benefits compared to synthetic fibers, such as renewable, light in weight, and low in cost. Manufacture of biocomposite requires the use of matrix such as thermoplastic polymer, e.g. polypropylene (PP) and polylactic acid (PLA) to bond together with the reinforcement agent (e.g. sisal fibers). In relevant, experiment was conducted on biocomposites manufacture that comprised sisal fibers and PP as well as PLA. Sisal fibers were converted into pulp, then refined to micro-size fibrillated fibers such that their diameter reduced to about 10 μm, and dried in an oven. The dry microfibrillated sisal pulp fibers cellulose (MSFC) were thoroughly mixed with either PP or PLA with varying ratios of MSFC/PP as well as MSFC/PLA, and then shaped into the mat (i.e. MSFC-PP and MSFC-PLA biocomposites). Two kinds of shaping was employed, i.e. hot-press molding and injection molding. In the hot-press molding, the ratio of  MSFC/PP as well as MSFC/PLA ranged about 30/70-50/50. Meanwhile in the injection (employed only on assembling the MSFC-PLA biocomposite), the ratio of MSFC/PLA varied about 10/90-30/70. The resulting shaped MSFC-PP and MSFC-PLA biocomposites were then tested of its physical and mechanical properties. With the hot-press molding device, the physical and mechanical (strength) properties of MSFC-PLA biocomposite were higher than those of  MSFC-PP biocomposite. The optimum ratio of  MSFC/PP as well as MSFC/PLA reached concurrently at 40/60. The strengths of MSFC-PP as well as MSFC-PLA biocomposites were greater than those of individual polymer (PP and PLA). With the injection molding device, only the MSFC-PLA  biocomposite  was formed  and its strengths  reached  maximum  at 30/70  ratio.  The particular strengths (MOR and MOE) of MSFC-PLA biocomposite shaped with injection molding were lower than those with hot-press molding, both at 30/70 ratio. The overall MOR of such MSFC- PLA biocomposite was lower than that of pure PLA, while its MOE was still mostly higher.
UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE Subyakto, Subyakto; Masruchin, Nanang; Prasetiyo, Kurnia Wiji; Ismadi, Ismadi
Indonesian Journal of Forestry Research Vol 10, No 1 (2013): Journal of Forestry Research
Publisher : Secretariat of Forestry Research and Development Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/ijfr.2013.10.1.11-20

Abstract

Sisal (Agave sisalana) as a perennial tropical plant grows abundantly in Indonesia. Its fibers can be used as the reinforcement agent of biocomposite products. Utilization of sisal as natural fiber has some notable benefits compared to synthetic fibers, such as renewable, light in weight, and low in cost. Manufacture of biocomposite requires the use of matrix such as thermoplastic polymer, e.g. polypropylene (PP) and polylactic acid (PLA) to bond together with the reinforcement agent (e.g. sisal fibers). In relevant, experiment was conducted on biocomposites manufacture that comprised sisal fibers and PP as well as PLA. Sisal fibers were converted into pulp, then refined to micro-size fibrillated fibers such that their diameter reduced to about 10 μm, and dried in an oven. The dry microfibrillated sisal pulp fibers cellulose (MSFC) were thoroughly mixed with either PP or PLA with varying ratios of MSFC/PP as well as MSFC/PLA, and then shaped into the mat (i.e. MSFC-PP and MSFC-PLA biocomposites). Two kinds of shaping was employed, i.e. hot-press molding and injection molding. In the hot-press molding, the ratio of  MSFC/PP as well as MSFC/PLA ranged about 30/70-50/50. Meanwhile in the injection (employed only on assembling the MSFC-PLA biocomposite), the ratio of MSFC/PLA varied about 10/90-30/70. The resulting shaped MSFC-PP and MSFC-PLA biocomposites were then tested of its physical and mechanical properties. With the hot-press molding device, the physical and mechanical (strength) properties of MSFC-PLA biocomposite were higher than those of  MSFC-PP biocomposite. The optimum ratio of  MSFC/PP as well as MSFC/PLA reached concurrently at 40/60. The strengths of MSFC-PP as well as MSFC-PLA biocomposites were greater than those of individual polymer (PP and PLA). With the injection molding device, only the MSFC-PLA  biocomposite  was formed  and its strengths  reached  maximum  at 30/70  ratio.  The particular strengths (MOR and MOE) of MSFC-PLA biocomposite shaped with injection molding were lower than those with hot-press molding, both at 30/70 ratio. The overall MOR of such MSFC- PLA biocomposite was lower than that of pure PLA, while its MOE was still mostly higher.
Physical-Mechanical Properties and Bonding Mechanism of Corn Stalks Particleboard with Citric Acid Adhesive Prasetiyo, Kurnia Wiji; Oktaviani, Linda; Astari, Lilik; Syamani, Firda A; Subyakto, Subyakto; Achmadi, Suminar S
Jurnal Ilmu dan Teknologi Kayu Tropis Vol 16, No 2 (2018): Jurnal Ilmu dan Teknologi Kayu Tropis
Publisher : Jurnal Ilmu dan Teknologi Kayu Tropis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (38.454 KB)

Abstract

As a natural fiber and agricultural by-product, corn stalks (Zea mays saccharata) is considered as an alternative raw material to produce particleboard. Corn stalks is a good source of lignocelluloses, renewable and low cost. This research was aimed to investigate the characteristics of corn stalk particleboard with citric acid as adhesive. This study also evaluated bonding mechanism particle with citric acid and the bonds between celluloses derived corn stalk with citric acid. The boards were manufactured under the hot pressing temperature 200 oC for 10 min. The citric acid concentration was varied in 0, 15, 20 and 25 wt%. The board size and target density were (25 x 25 x 0.9) mm3 and 0.8 g.cm-3. Results showed that the physical properties of particleboards improved with increasing citric acid concentration up to 20 wt%. At the optimum citric acid content of 20 wt% could provide particleboards with the modulus of rupture, modulus of elasticity and internal bonding satisfied the requirement of the 13 type of the JIS A 5908 (2003) standard. Infrared (IR) spectral analysis from board which manufactured from isolated cellulose was mixed citric acid and pressed on temperature 200 oC showed the presence of ester linkages that the carboxyl and hydroxyl groups of citric acid had reacted with the hydroxyl groups of corn stalk cellulose.Keywords : citric acid, corn stalk, concentration, particleboard, adhesive
EFFECTS OF CHITOSAN COATING ON THE PHYSICAL, MECHANICAL AND ANTIMICROBIAL PROPERTIES OF FOOD PACKAGING PAPER Prasetiyo, Kurnia Wiji; Zulfiana, Deni; Anita, Sita Heris; Fatriasari, Widya; Suryanegara, Lisman; Masruchin, Nanang; Gutari, Sesmi
Jurnal Sains Materi Indonesia Vol 21, No 2: JANUARY 2020
Publisher : Center for Science & Technology of Advanced Materials - National Nuclear Energy Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (990.486 KB) | DOI: 10.17146/jsmi.2020.21.2.5600

Abstract

EFFECTS OF CHITOSAN COATING ON THE PHYSICAL, MECHANICAL AND ANTIMICROBIAL PROPERTIES OF FOOD PACKAGING PAPER. The coating process on food packaging paper is carried out to improve the food safety and health aspect from dangerous substance migration from food packaging into food. Chitosan has attracted interest in packaging, especially in food packaging as edible films and coatings. A paper from oil palm empty fruit bunches (OPEFB) pulp was coated with chitosan using different pulp weight (1, 1.5, 2 g) and chitosan content (0.25, 0.50, 0.75, 1 g) as parameters. The effect of chitosan as coating material on physical, mechanical, and antimicrobial properties was studied. The results showed that the density and grammage values of the paper increased after coating due to the increasing of chitosan content. The mechanical properties of the coated paper, such as tensile strength, tensile modulus and elongation, improved in line with the increase of chitosan content and pulp weight. The addition of chitosan on paper imparts antimicrobial properties against Gram-positive bacteria (Staphylococcus aureus) and Gram- negative bacteria (Escherichia coli).
APLIKASI NANOTEKNOLOGI DALAM INDUSTRI HASIL HUTAN (Application Of Nanotechnology In Forest Products Industry) Prasetiyo, Kurnia Wiji
Jurnal Akar Vol. 2 No. 1 (2020): Februari Jurnal Akar
Publisher : PRODI KEHUTANAN UNIVERSITAS SIMALUNGUN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36985/jar.v9i1.189

Abstract

Abstrak: Penggunaan serat alam untuk komposit, disamping banyak keuntungan, dalam beberapa hal masih ada tantangan yang perlu diselesaikan. Serat alam mempunyai sifat hydrophilic, jika dikombinasikan dengan matrik polimer yang mempunyai sifat hydrophobic akan mengurangi kekuatan komposit yang dihasilkan. Untuk mengatasi hambatan di atas maka bisa dilakukan dengan penambahan coupling agent pada matrik dan memperbaiki metode proses yang diterapkan. Nanoteknologi didefinisikan sebagai ilmu dan teknik yang mencakup desain, sintesis dan karakterisasi serta aplikasi bahan yang setidaknya terorganisir dalam satu dimensi pada skala nanometer atau spermilyar meter. Nanoteknologi merupakan manipulasi material yang berukuran ≤100 nm dan setidaknya termasuk kedalam kategori satu dimensi dimana sifat fisik, kimia dan biologinya secara fundamental berbeda dengan bulk material.    
Hybrid Particleboard Made of Corn Husk (Zea Mays L.) and Sembilang Bamboo (Dendrocalamus Giganteus Munro): Effect of Adhesive Type and Particle Composition Prasetiyo, Kurnia Wiji; Hermawan, Dede; Hadi, Yusuf Sudo; Subyakto, Subyakto; Firdaus, Muhammad; Syamani, Firda Aulya; Astari, Lilik
Jurnal Bahan Alam Terbarukan Vol 10, No 2 (2021): December 2021 [Nationally Accredited - Sinta 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v10i2.31600

Abstract

Particleboard is a panel product made of wood particles or other lignocellulosic materials added with adhesive then pressed. The development of particleboard manufactured using non wood biomass has become important due to the decreased of wood as main raw material for the particleboard industry. Corn husk (Zea mays L.) and Sembilang bamboo (Dendrocalamus giganteus Munro) are lignocellulosic biomass that has  potential as  renewable materials for hybrid particleboard. The purposes of this study were to determine the suitability, the effect of adhesive type, and particle composition on physical and mechanical properties of hybrid particleboard made of corn husk and Sembilang bamboo particles. The adhesive types used were urea formaldehyde (UF) and phenol formaldehyde (PF) with 10 wt% adhesive content and the composition of corn husk : Sembilang bamboo was  set at 100 : 0, 75 : 25, 50 : 50, 25 : 75, 0 : 100 (% w/w). The target density of hybrid particleboard was set at 0.80 g/cm3. The boards were manufactured at 130 °C for UF and 150 °C for PF press temperature, 10 minutes and 2.5 MPa for the pressure of the hot press. The results showed that hybrid particleboard properties improved with increasing the amount of Sembilang bamboo particles in the board. Hybrid particleboard properties affected in ascending order were modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB) and screw holding power (SHP). Generally, hybrid particleboard bonded PF adhesive has better properties than bonded UF adhesive. Results indicated that the addition of Sembilang bamboo particles in the mixture resulted in better properties of hybrid particleboard.
UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE Subyakto Subyakto; Nanang Masruchin; Kurnia Wiji Prasetiyo; Ismadi Ismadi
Indonesian Journal of Forestry Research Vol 10, No 1 (2013): Journal of Forestry Research
Publisher : Secretariat of Agency for Standardization of Environment and Forestry Instruments

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/ijfr.2013.10.1.11-20

Abstract

Sisal (Agave sisalana) as a perennial tropical plant grows abundantly in Indonesia. Its fibers can be used as the reinforcement agent of biocomposite products. Utilization of sisal as natural fiber has some notable benefits compared to synthetic fibers, such as renewable, light in weight, and low in cost. Manufacture of biocomposite requires the use of matrix such as thermoplastic polymer, e.g. polypropylene (PP) and polylactic acid (PLA) to bond together with the reinforcement agent (e.g. sisal fibers). In relevant, experiment was conducted on biocomposites manufacture that comprised sisal fibers and PP as well as PLA. Sisal fibers were converted into pulp, then refined to micro-size fibrillated fibers such that their diameter reduced to about 10 μm, and dried in an oven. The dry microfibrillated sisal pulp fibers cellulose (MSFC) were thoroughly mixed with either PP or PLA with varying ratios of MSFC/PP as well as MSFC/PLA, and then shaped into the mat (i.e. MSFC-PP and MSFC-PLA biocomposites). Two kinds of shaping was employed, i.e. hot-press molding and injection molding. In the hot-press molding, the ratio of  MSFC/PP as well as MSFC/PLA ranged about 30/70-50/50. Meanwhile in the injection (employed only on assembling the MSFC-PLA biocomposite), the ratio of MSFC/PLA varied about 10/90-30/70. The resulting shaped MSFC-PP and MSFC-PLA biocomposites were then tested of its physical and mechanical properties. With the hot-press molding device, the physical and mechanical (strength) properties of MSFC-PLA biocomposite were higher than those of  MSFC-PP biocomposite. The optimum ratio of  MSFC/PP as well as MSFC/PLA reached concurrently at 40/60. The strengths of MSFC-PP as well as MSFC-PLA biocomposites were greater than those of individual polymer (PP and PLA). With the injection molding device, only the MSFC-PLA  biocomposite  was formed  and its strengths  reached  maximum  at 30/70  ratio.  The particular strengths (MOR and MOE) of MSFC-PLA biocomposite shaped with injection molding were lower than those with hot-press molding, both at 30/70 ratio. The overall MOR of such MSFC- PLA biocomposite was lower than that of pure PLA, while its MOE was still mostly higher.
Physical-Mechanical Properties and Bonding Mechanism of Corn Stalks Particleboard with Citric Acid Adhesive Kurnia Wiji Prasetiyo; Linda Oktaviani; Lilik Astari; Firda Aulya Syamani; Subyakto Subyakto; Suminar S Achmadi
Jurnal Ilmu dan Teknologi Kayu Tropis Vol 16, No 2 (2018): Jurnal Ilmu dan Teknologi Kayu Tropis
Publisher : Masyarakat Peneliti Kayu Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1180.28 KB) | DOI: 10.51850/jitkt.v16i2.448

Abstract

As a natural fiber and agricultural by-product, corn stalks (Zea mays saccharata) is considered as an alternative raw material to produce particleboard. Corn stalks is a good source of lignocelluloses, renewable and low cost. This research was aimed to investigate the characteristics of corn stalk particleboard with citric acid as adhesive. This study also evaluated bonding mechanism particle with citric acid and the bonds between celluloses derived corn stalk with citric acid. The boards were manufactured under the hot pressing temperature 200 oC for 10 min. The citric acid concentration was varied in 0, 15, 20 and 25 wt%. The board size and target density were (25 x 25 x 0.9) mm3 and 0.8 g.cm‑3. Results showed that the physical properties of particleboards improved with increasing citric acid concentration up to 20 wt%. At the optimum citric acid content of 20 wt% could provide particleboards with the modulus of rupture, modulus of elasticity and internal bonding satisfied the requirement of the 13 type of the JIS A 5908 (2003) standard. Infrared (IR) spectral analysis from board which manufactured from isolated cellulose was mixed citric acid and pressed on temperature 200 oC showed the presence of ester linkages that the carboxyl and hydroxyl groups of citric acid had reacted with the hydroxyl groups of corn stalk cellulose.