Claim Missing Document
Check
Articles

Found 3 Documents
Search

The Effect of Acidic pH on Growth Kinetics, Biomass Productivity, and Prima-ry Metabolite Contents of Euglena sp. Nurafifah, Istini; Hardianto, Muhammad Andhi; Erfianti, Tia; Amelia, Ria; Maghfiroh, Khusnul Qonita; Kurnianto, Dedy; Siswanti, Dwi Umi; Sadewo, Brilian Ryan; Putri, Renata Adaranyssa Egistha; Suyono, Eko Agus
Makara Journal of Science Vol. 27, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Euglena is a microalga with the potential to be an environmentally friendly renewable energy resource. The pH value is a crucial factor in micro-algal cultivation. Changes in pH affect the growth and development of microalgae, including the production of biomass and primary metabolites, such as proteins, carbohydrates, and lipids. In this study, Euglena sp. was grown on Cramer-Myers medium and subjected to various acidic conditions. This study aimed to determine the effect of pH on the growth kinetics, biomass, carbohydrate, lipid, and protein contents of Euglena sp. The Euglena sp. culture was optimized at various pH values of 2.5, 3.5, and 4.5. The results were analyzed by one-way analysis of variance at a 95% confidence level, followed by Duncan’s multiple range test. As results, Euglena sp. had the best growth rate, the greatest biomass, and the highest carbohydrate, protein, and lipid contents at pH 3.5 compared to the other pH conditions. The average biomass in the pH 3.5 treatment was 1.600 ± 0.229 g/L, and the carbohydrate, protein, and lipid contents were 5.983 ± 0.056 g/L, 0.196 ± 0.023 µg/mL, and 0.300 ± 0.020 g/L, respectively.
The Effect of Various Photoperiodic Conditions and Zn2+ Concentrations on Growth Rate and Metabolite Content in Euglena sp: Effect of Photoperiod and Zn2+ on Euglena sp. Eko Agus Suyono; Budiman, Arief; Siti Ferniah, Rejeki; Astiti, Adam; Mardyansah, Deviko; Natalia, Fitri; Cindiati, Maya; Qonita Maghfiroh, Khusnul; Erfianti, Tia; Nurafifah, Istini; Amelia, Ria; Kurnianto, Dedy; Ryan Sadewo, Brilian; Maggandari, Revata
Journal of Tropical Life Science Vol. 14 No. 2 (2024)
Publisher : Journal of Tropical Life Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11594/jtls.14.02.04

Abstract

The application of Euglena as a carbon capture organism has generated considerable interest among scientists. Through the photosynthesis process, many kinds of metabolites are produced by Euglena, such as lipids, proteins, and pigments. Due to the metabolites produced by Euglena, it is vital to optimize the carbon capture ability and cell growth rate by adding Zn2+ content and giving photoperiodic into Euglena culture. The purpose of this study is to identify the optimal photoperiod and Zn2+ concentration to increase the growth rate, biomass, and metabolite content of Euglena sp. This study is a laboratory experiment involving the cultivation of Euglena sp. in various photoperiod cycles (light:dark), namely 24:0, 12:12, 14:10, and 16:8. In addition, Euglena sp. was also cultivated using different concentrations of Zn2+ (0 ppm, 5 ppm, 10 ppm, and 15 ppm). The growth of Euglena sp. was monitored for 18 days before being harvested every three days to measure the research parameters, including primary and secondary metabolites. The results showed that the photoperiod treatment and various concentrations of Zn2+ had a significant impact (P<0.05) on the growth rate, biomass, lipid, carbohydrate, protein, chlorophyll, and carotenoid levels of Euglena sp.  
Growth Kinetic Modelling of Efficient Anabaena sp. Bioflocculation Rahmawati, Amalia; Rohmawati, Irma; Nurafifah, Istini; Sadewo, Brilian Ryan; Suyono, Eko Agus
Journal of Tropical Biodiversity and Biotechnology Vol 9, No 1 (2024): March
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jtbb.82196

Abstract

Bioflocculation is a harvesting technique that employs flocculant agents such as bacteria and microalgae. The benefit is the absence of a chemical-added flocculant. Because bacteria need a particular medium, microalgae flocculant agents are more effective. This study used Anabaena sp. to collect fat, protein, and carbohydrates from the Glagah consortium. Three replications of those microalgae were grown in 300 ml of Bold Basal Medium culture for eight days. On the day of harvest, flocculant microalgae (Anabaena sp.) and non-flocculant microalgae (Glagah) were combined to accomplish flocculation. On the day of harvest, parameters were observed by combining Anabaena sp. with the Glagah consortium in the ratios 1: 1, 0.5: 1, and 0.25: 1. There were three times of each parameter test. Utilizing a wavelength of 750 nm, the proportion of precipitation was calculated spectrophotometrically. Bligh and Dyer were used to measure the lipids. The phenol sulfate technique was used to calculate the amount of carbohydrates. By employing the Bradford method, proteins were quantified. Biofocculation percentages and carbohydrate content were optimum on a ratio of 0.25:1. Lipid and protein content were optimum on a ratio of 1:1.