cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of the Civil Engineering Forum
ISSN : 25811037     EISSN : 25495925     DOI : -
Core Subject : Social, Engineering,
Journal of the Civil Engineering Forum (JCEF) is a four-monthly journal on Civil Engineering and Environmental related sciences. The journal was established in 1992 as Forum Teknik Sipil, a six-monthly journal published in Bahasa Indonesia, where the first publication was issued as Volume I/1 - January 1992 under the name of Forum Teknik Sipil.
Arjuna Subject : -
Articles 10 Documents
Search results for , issue "Vol. 6 No. 1 (January 2020)" : 10 Documents clear
The Effect of Toll Gate Type on the Queue of Vehicles in Connecting Roads: A case study of Bawen – Yogyakarta Toll Road Herna Puji Astutik; Dewanti Dewanti
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.43975

Abstract

Due to the increased population, accessibility from one place to another, and effort to support economic growth, the Indonesian Central Government plans to build 71 kilometers of Yogyakarta-Bawen Toll Road. It is, however, important to state that the technical requirements of a connecting road are an integral part of the toll road construction. Therefore, this research was conducted to determine the sufficient length for the connecting road between the toll gate and existing one to reduce the investment of Toll Road Business Entity and ensure a more extended return period of concession. The data used include the vehicle speed and daily traffic on the road while the maximum length value of vehicle queue occurring in the peak hour period and interval for each type of toll gate was calculated in the modeling simulation. The results showed the satellite gate with 4 lines has 159 meters, tandem with 2 lines has 434 meters, and extending with 3 lines has 513 meters. Since all the gates have less than 2 kilometers of queue length, the stretch of the connecting road in each toll of the plan needs to be analyzed to ensure effective development
Parametric Study of the Effect of Ground Anchor on Deep Excavation Stability Aditya Putra Pratama; Hary Christady Hardyatmo; Fikri Faris
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (465.392 KB) | DOI: 10.22146/jcef.47514

Abstract

Apartment construction is mostly carried out by including deep excavation works. However, excavation causes land instability; hence, the work needs to be done by a particular handler. In some cases, deep excavation is carried out on soft soil, which has a very high level of soil instability; therefore, a specific handling method such as ground anchor is required as an alternative. This study aims to conduct parametric research on the effect of using anchors on the stability of deep excavation. First, anchors of various slopes were modelled while varying the number of anchors up to four pieces. From the results of the study, the requirements representing the most efficient use of anchors were selected, and then various anchor bond lengths were modelled. Finally, the effect of applying various magnitudes of prestress forces to the anchor was determined. All of the models were examined to determine the influence on the stability of the deep excavation by observing the horizontal displacement and the forces that occur on the secant pile. From the analysis results, it can be concluded that the most effective slope angle is 0°. The displacement and forces occurred in the secant piles on the use of two, three, or four anchors has not a significant difference. The application of a higher prestress force on the anchor would yield better results as long as it is not exceeding 200 kN. However, in the case of an apartment building’s plans in Surabaya, the optimal anchor usage was found to be the use of two anchors with a 45° slope, 4.5 m for the first (A) and second (B) anchor bond lengths, 15 m free length anchor, 2.5 m vertical anchor distance, 1.2 m horizontal anchor distance, and the application of 200 kN prestress force.
Strength Properties of Untreated Coal Bottom Ash as Cement Replacement Noraziela Syahira Baco; Shahiron Shahidan; Sharifah Salwa Mohd Zuki; Noorwirdawati Ali; Mohamad Azim Mohammad Azmi
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (253.425 KB) | DOI: 10.22146/jcef.47657

Abstract

Coal Bottom Ash (CBA) is a mineral by-product of thermal power plants obtained from the combustion of coal. In many countries, CBA wastes are identified as hazardous materials. The utilization of CBA can help in alleviating environmental problems; thus, this research was carried out to explore the possibility of its use as cement replacement in concrete manufacturing. Presently, In Malaysia, research that concerns about the use of CBA as cement replacement is very limited. Therefore, this study was aimed to investigate the properties of CBA as cement replacement and to identify the optimum percentage of untreated CBA as cement replacement. The CBA used in this study were taken from the Tanjung Bin power plant. In this research, the amount of CBA in the concrete mixture varied from 20% to 40% to replace cement. The properties of concrete containing CBA as cement replacement was examined through slump test, sieve analysis, concrete compressive strength test and splitting tensile strength test. The compressive strength test and splitting tensile strength test were performed at 7 and 28 days of curing time. Based on this research, it can be concluded that the optimum percentage of CBA as cement replacement is 25% for a curing time of both 7 and 28 days with the concrete compression strength of 45.2 MPa and 54.6 MPa, respectively. Besides, the optimum percentage for tensile strength is also at 25% CBA for a curing period of both 7 and 28 days with the tensile strength of 2.91 MPa and 3.28 MPa, respectively. 
The Ability to Pay and Willingness to Pay on Operation of Adi Soemarmo Airport Train Access Line to Airplane Passengers Wahyu Chrismasto; Imam Muthohar; Danang Parikesit
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (637.177 KB) | DOI: 10.22146/jcef.48405

Abstract

Connectivity between transportation nodes is crucial in encouraging the movement of people and goods, including access to Adi Soemarmo Airport. Currently, access to Adi Soemarmo Airport is dominated by private vehicles and taxis compared to public transportation such as buses which can be costly for some passengers. To cut the cost of transportation in Adi Soemarmo airport, the Ministry of Transportation has built railway access to Adi Soemarmo Airport from Solo Balapan Station and vice versa. However, the scheme of train’s tariff is solely designed to accommodate only operational and maintenance cost, while the ability and willingness of passengers to pay are simply neglected. This research aims to analyse willingness to pay of airplane passenger for the operation plan of airport train based on mode choice model and contingent valuation method and finally be able to determine the tariff based on willingness to pay and train operating costs. Mode choice model uses logit binomial in terms of differences with a stated preference method, willingness to pay analysis uses the net economic value from binomial logit and train operating cost calculations use the Minister of Transportation Regulation Number PM 17 the Year 2018. The average value of willingness to pay of prospective airport train users for each car, taxi and bus users based on binomial logit model is IDR14,802.42, IDR14,121.13, IDR14,221.42. Meanwhile, the value of the ability to pay for each car, taxi and bus users is IDR60,996.90, IDR79,564.67, IDR55,117.17 and the tariff value based on train operating costs is IDR17,730.22.
Modeling and Analysis of the Effect of Holes in Reinforced Concrete Column Structures Yohanes Laka Suku; Kristoforus Je
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (531.098 KB) | DOI: 10.22146/jcef.48722

Abstract

Holes are often made inside the column structure for plumbing, mechanical, and electrical installation purposes may affect the structural performance of the column. Therefore, this paper aims to model and analyze the effect of holes in reinforced concrete column structures due to lateral loads. Data were obtained from the reference frame structure of the previous researcher, with varying centric column holes of 0%, 2%, 4%, 6%, 8%, 10%, and 12%, respectively to the column cross-sectional area. Furthermore, a hole with a ratio of 4% to the column cross-sectional area was placed at 5 and 10 mm eccentric to the center of column cross-section to examine the influence of holes position in the perforated column. The frame structure was modelled and analyzed by Finite Element (FE) using ABAQUS software. The result showed that the maximum load, displacement, and crack pattern resulted from the model is close to the experimental result. The results of the analysis showed that with the hole size of 2% to 12% of the column cross-sectional area, the frame strength was reduced by 5.43% to 15.56%.  The frame strength was also reduced by 2.77% and 6.14% when the hole placed 5mm and 10 mm eccentric to the center of the column cross-section area. The displacement of the frame also decreases by 59.63% to 74.60% when the holes with the ratio of 2% to 12% to the column cross-sectional area exist in the column. The existence of eccentric holes on the column reduced the performance of the frame structure, by decreasing its strength, displacement and ductility.
The Effect of Horizontal Vulnerability on the Stiffness Level of Reinforced Concrete Structure on High-Rise Buildings Fanny Monika; Berkat Cipta Zega; Hakas Prayuda; Martyana Dwi Cahyati; Yanuar Ade Putra
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.49387

Abstract

Buildings have an essential function; they are a place for people to carry out various activities, such as social, economic, and religious activities. In a building construction plan, considering multiple factors from strength to architecture is necessary. The issue of limited land in some areas has resulted in the construction of vertical buildings, often known as high-rise buildings. High-rise building construction requires paying attention to various levels of vulnerabilities, especially for projects in earthquake-prone areas. In this study, the levels of vulnerability and vertical irregularity of high-rise buildings were analyzed based on structural rigidity for reinforced concrete structures. Building models including a cube-shaped model, L-shaped model, and U-shaped model were investigated. The STERA 3D program was used to determine the strength values of the structures by providing earthquake loads on each structure model using the time-history analysis method. The El Centro and Kobe earthquakes were tested in these structural models because the earthquakes are known to contribute the most exceptional damage value in the history of earthquake-caused disasters. The assessed parameters of the tested structural models include structural stiffness, the most significant displacement in the structure, the maximum displacement and load relations experienced by the construction, and the hysteretic energy exhibited by the structure. Therefore, the best performed structural model in resisting the load could be obtained. The results showed that the U-shaped building model had the highest stiffness value with an increase in stiffness of 7.43% compared with the cube-shaped building model and 3.01% compared with the L-shaped building model.
Building Information Modeling (BIM) for Dams-Literature Review and Future Needs Yunitta Chandra Sari; Catur Ayu Wahyuningrum; Nindyo Cahyo Kresnanto
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (234.554 KB) | DOI: 10.22146/jcef.51519

Abstract

Dam is a structure with high beneficial values and these include, serving as the source of raw water supply and electrical energy, ensuring flood reduction, tourist attractions, and habitat protection. It is, however, associated with a very complex development process ranging from the planning/design, construction, as well as operation and maintenance. Therefore, there is a need for special attention, accuracy, and good coordination at every stage from the parties involved as well as the integration of all fields starting from the Architecture, Engineering, and Construction (AEC) elements. Moreover, ensuring an effective and efficient construction process presents a serious challenge for the owner/government, designers, consultants and contractors which is now being resolved through the use of a technological innovation known as the Building Information Modeling (BIM).This study was conducted to determine the scientific developments of BIM for dam management and also to identify further related areas to be researched in the future. Moreover, the analysis was concentrated on the potential added value of the technological innovations on dams, explained its advantages, and assesses the potential challenges hampering its effectiveness in Indonesia. It was discovered that the use of BIM for dam projects is possible as long as there are adequate government regulations and the availability of qualified human resources while the consequence would be an increase in the investment cost. The findings of this research are expected to encourage the use of BIM in dam construction and management in Indonesia and also to increase efficiency and effectiveness in all aspects.
Application of TRMM Data to the Analysis of Water Availability and Flood Discharge in Duriangkang Dam Willy Willy; Bambang Adi Riyanto; Doddi Yudianto; Albert Wicaksono
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.931 KB) | DOI: 10.22146/jcef.51521

Abstract

One of the challenges in hydrologic modelling in Indonesia is data limitation. Rainfall data quality is rarely evaluated, and in some cases, the data are unavailable. The Tropical Rainfall Measuring Mission (TRMM), satellite rainfall data provided by NASA, is an alternative method to solve such problems. This study aims to promote the use of TRMM data to analyze water availability and flood discharge in Duriangkang Dam, Batam City, Indonesia, in comparison with the use of available ground station data. Results show that the ground station data contain some errors; however, overall, the data show similar patterns and acceptable differences compared with the TRMM data. The NRECA and HEC-HMS models are used to analyze water availability, and both models are calibrated using the available reservoir water level data. The NRECA model generally shows a good fit of monthly discharge, although the use of TRMM results in slightly overestimated values in dry years. Similar results are obtained for daily discharge computation using the HEC-HMS model. Water availability analysis using the TRMM data shows an acceptable margin of error. When flood discharge is computed using an uncalibrated HEC-HMS model, the TRMM data somehow yield a lower maximum daily rainfall value than the ground station data. As a result, the obtained 10,000-year flood calculated using the Hang Nadim Station and TRMM data are 1,086 and 624 m3/s, respectively. Therefore, the use of corrected TRMM data in flood discharge computation is essential but increases the value up to 897 m3/s.
The Impacts of Flood and Drought on Food Security in Central Java Endita Prima Ari Pratiwi; Eka Laily Ramadhani; Fatchan Nurrochmad; Djoko Legono
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3298.437 KB) | DOI: 10.22146/jcef.51872

Abstract

To achieve food security, water must be available at the right place, at the right time, in the right quantity, and be of the right quality. Water-related disasters will negatively affect agricultural areas and crop production, which can threaten food security. Nevertheless, flood and drought strike Central Java, one of the rice production centres in Indonesia, every year, and climate change has been worsening the condition because extreme events occur more frequently. This study reviews the impacts of flood and drought on paddy fields in Central Java from 2014 to 2018. A set of historical documents, including reports on flood and drought, rainfall records, and rice production, were collected from government institutions. Quantitative analysis was conducted using statistics and geographic information system tools. The results showed that the 2014 flood event reflected badly on 94,306 hectares (ha) paddy fields. Four severely affected regencies were Pati (25,460 ha), Demak (13,560 ha), Jepara (13,281 ha), and Kudus (12,203 ha). Meanwhile, drought in 2015 affected 82,324 ha paddy field. The areas severely damaged by drought were Blora (12,335 ha), Cilacap (11,503 ha), Grobogan (10,514 ha), and Pemalang (10,134 ha). Pearson’s correlation analysis results indicated that the correlation between annual rainfall and drought impact (r = −0.865, p = 0.058) is more significant than that between annual rainfall and drought impact (r = 0.794, p = 0.108). The stakeholders have adopted some strategies to minimise losses, such as establishing a 1,000 small water reservoirs program, preparing temporary pump irrigation, and providing agricultural insurance. Nevertheless, more efforts are still necessary to fight against food insecurity.
A Critical Review of Wastewater Resource Recovery Implementation in Indonesia Ni Nyoman Nepi Marleni; Gema Sakti Raspati
Journal of the Civil Engineering Forum Vol. 6 No. 1 (January 2020)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (307.407 KB) | DOI: 10.22146/jcef.52755

Abstract

Wastewater has been recognized as a resource due to its large quantities, and it contains many valuable resources that can be converted into valuable material. Reusing or recovering resources from wastewater can reduce the environmental footprint of wastewater treatment, minimize the contamination and ensure the availability of valuable resources for the human being. The ultimate aim of wastewater resource recovery (WRR) is to create a sustainable and resilient community which is very relevant in Indonesia as this country experiences many natural or human-made disaster. To have an effective implementation, therefore, it is crucial to identify the barriers or supporting factors in its implementation of Wastewater Resource Recovery, which can be different for many regions. Through extensive literature studies, this study intends to review the possibility of WRR implementation in Indonesia.  This study discusses Indonesia policy/regulation about wastewater management across all-region in Indonesia, identify barriers in WRR, compares global trends of wastewater management to Indonesia practice and list wastewater resources that potentially can be recovered in Indonesia. From the review, barriers of WRR implementation in Indonesia is most probably due to the policy and regulation of wastewater management which many of them did not support the option of WRR, instead of suggesting only safe discharge option. However, some regulations have mentioned the utilization of wastewater by-product, but it is limited only to treated water utilization. Other obstacles are social acceptance and distance between recovered material supply and demand. Social acceptance includes the human perception regarding the health risk associated with wastewater by-product. Religion also could be a potential barrier that needs to be handled in the implementation of WRR. This study could give new insight into the current state of wastewater resource recovery initiative in Indonesia; thus the strategy to overcome the barriers could be designed.

Page 1 of 1 | Total Record : 10