cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 50 Documents
Search results for , issue "Vol 9, No 1: March 2018" : 50 Documents clear
Improved Time Responses of PI & FL Controlled SEPIC Converter based Series Resonant Inverter-fed Induction Heating System Muthu Periyasamy; Chandrahasan Umayal
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (746.319 KB) | DOI: 10.11591/ijpeds.v9.i1.pp305-315

Abstract

This work deals with the Power Factor Corrected Single-Ended Primary Inductor Converter (PFC-SEPIC) based voltage fed closed loop full bridge series resonant induction heating system for household induction heating applications. The output voltage of the front end PFC-SEPIC converter fed series resonant inverter governs the controllers, which may be PI controller or Fuzzy Logic Controller (FLC). The analysis and comparison of time responses are presented in this paper. The PFC-SEPIC converter is used to improve the output power and the THD of source side current are compared for PI and FLC controllers. PFC-SEPIC converter maintains improved current and voltage at unity power factor through the input mains. The SEPIC converter based Voltage Fed Full Bridge Series Resonant Inverter (VFFBSRI) converts the voltage at a frequency of 10 kHz to a level suitable for household induction heating. A 1 kW SEPIC converter based VFFBSRI with RLC load is designed and simulated using MATLAB/ Simulink and hardware is fabricated.
A Design of Electrical Permanent Magnet Generator for Rural Area Wind Power Plant Muhammad Irfan; Ermanu Azizul Hakim; Diding Suhardi; Nur Kasan; Machmud Effendy; Ilham Pakaya; Amrul Faruq
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (633.22 KB) | DOI: 10.11591/ijpeds.v9.i1.pp269-275

Abstract

This paper aims to design and simulate an Electrical Permanent Magnet Generator (EPMG) for rural area wind power plant. The generators available in the market mostly are a kind of high speed induction generator which requires high rotational speed and an electricity to generate a magnetic field. In this project, a radial flux generator is designed to have a low speed rotation using permanent magnet type Neodymium Iron Boron (NdFeB). Software used for designing is Finite Element Method (FEM) Magnet software basis. The model also examined with Simulink/Matlab environment. Extensive modifications are applied to get optimum result by changing generator diameter, number of coils, the copper wire diameter, number of poles, and used slots. The simulation results obtained generator speed 500rpm, the average series voltage is 145 Vrms, the generator requires 18cm diameter, number of turn for each coil is 55, diameter of the copper wire used is 0.6mm, and number of poles is 8 pairs and 12 unit slots.
Very-Short Term Wind Power Forecasting through Wavelet Based ANFIS M. Nandana Jyothi; P.V. Ramana Rao
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1073.802 KB) | DOI: 10.11591/ijpeds.v9.i1.pp397-405

Abstract

This paper proposes a Wavelet based Adaptive Neuro-Fuzzy Inference System (WANFIS) applied to forecast the wind power and enhance the accuracy of one step ahead with a 10 minutes resolution of real time data collected from a wind farm in North India. The proposed method consists two cases. In the first case all the inputs of wind series and output of wind power decomposition coefficients are carried out to predict the wind power. In the second case all the inputs of wind series decomposition coefficients are carried out to get wind power prediction. The performance of proposed WANFIS is compared to Wavelet Neural Network (WNN) and the results of the proposed model are shown superior to compared methods.
Design and Analysis of In-Wheel Double Stator Slotted Rotor BLDC Motor for Electric Bicycle Application S. Farina; R.N. Firdaus; F. Azhar; M. Azri; M. S. Ahmad; R. Suhairi; A. Jidin; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (867.75 KB) | DOI: 10.11591/ijpeds.v9.i1.pp457-464

Abstract

This paper discusses about design and analysis of double stator slotted rotor (DSSR) BLDC motor for electric bicycle application. Usually single stator (SS) BLDC motor is used in an electric bicycle. This type of motor has low performance and need to be charged regularly. The objective of this research is to design and analysis DSSR motor that have high torque. At starts, design specification for the electric bicycle is calculated. Next, design process for DSSR is carried out by using the desired parameter. Lastly, analysis for double stator slotted rotor is simulated using FEM. Result  for average back emf, average inductance, inner stator flux density, outer stator flux density, average torque and estimate torque constant is obtained. Result for average torque from FEM archieve the requirement of motor torque for DSSR design where the maximum average torque is 16.2 Nm. This research will give benefit to mankind and society in term of environment protection and energy consumption.
A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics Distortion and High Power Factor Santhi Mary Antony; Godwin Immanuel
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (522.759 KB) | DOI: 10.11591/ijpeds.v9.i1.pp17-24

Abstract

Now day’s the power factor has become a major problem in power system to improve the power quality of the grid, as power factor is affected on the grid due to the nonlinear loads connected to it. Single phase bridgeless AC/DC power factor correction (PFC) topology to improve the power factor as well as the total harmonic distortion (THD) of the utility grid is proposed. By removing the input bridge in conventional PFC converters, the control circuit is simplified; the total harmonics distortion (THD) and power factor (PF) are improved. The PI controller operates in two loops one is the outer control loop which calculates the reference current through LC filter and signal processing. Inner current loop generates PWM switching signals through the PI controller. The output of the proposed PFC topology is verified for prototype using MATLAB circuit simulations. The experimental system is developed, and the simulation results are obtained.
Correlation between Battery Voltage under Loaded Condition and Estimated State of Charge at Valve-Regulated Lead Acid Battery on Discharge Condition using Open Circuit Voltage Method Ahmad Qurthobi; Anggita Bayu Krisna Pambudi; Dudi Darmawan; Reza Fauzi Iskandar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2139.099 KB) | DOI: 10.11591/ijpeds.v9.i1.pp357-364

Abstract

One of the common methods that developed to predict state of charge is open circuit voltage (OCV) method. The problem which commonly occurs is to find the correction parameter between open circuit voltage and loaded voltage of the battery. In this research, correlation between state of charge measurement at loaded condition of a Panasonic LC-VA1212NA1, which is a valve-regulated lead acid (VRLA) battery, and open circuit voltage had been analyzed. Based on the results of research, correlation between battery’s measured voltage under loaded condition and open circuit voltage could be approached by two linearization area. It caused by K v ’s values tend to increase when measured voltage under loaded condition V M < 11.64 volt. However, K v values would be relatively stable for every V M ≥ 11.64 volts. Therefore, estimated state of charge value, in respect to loaded battery voltage, would increase slower on V M < 11.64 volts and faster on other range.
Design of a Battery-Ultracapacitor Hybrid Energy Storage System with Power Flow Control for an Electric Vehicle Boon Kai Tan; Nadia M. L. Tan; Agileswari Ramasamy
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1440.757 KB) | DOI: 10.11591/ijpeds.v9.i1.pp286-296

Abstract

A combination of battery and ultracapacitor as a hybrid energy storage system (HESS) of an electric vehicle (EV) can result in better acceleration performance, reduce battery charge-discharge cycle and longer driving range. This paper presents a new converter design combining triple-half-bridge (THB) and buck-boost half-bridge (BHB) converters in a battery-ultracapacitor HESS. The BHB converter is used to compensate the voltage variation of the ultracapacitor. A power management system is proposed to control the power of battery and ultracapacitor to supply the demanded power. This paper describes the operation of the proposed converter using a simplified ∆-type primary-referred equivalent circuit. This paper also shows the simulation results verifying the dynamic response of the proposed power management system for the proposed HESS. 
Eccentric operation of STATCOM using Predictive Controller K. Varalakshmi; Narasimham R.L.; G. Tulasi Ramdas
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (650.239 KB) | DOI: 10.11591/ijpeds.v9.i1.pp150-156

Abstract

The impact of multilevel converter STATCOM in transmission and distribution system is given high importance. Increment of number of switches in multi-level cascaded H-bridge converter, made it more vulnerable to open circuit and short circuit faults. To reduce the effect of faults on line voltage magnitude, in this paper an advanced improved predictive controller is used to generate PWM pulses for the power electronic devices. A Cascaded H-bridge STATCOM, interconnected to a distribution system with linear and non-linear loads. The feedback control structure of STATCOM has an advantage of reducing THD and controllable reactive power. A switch fault detection and elimination method is proposed with a bypass switch connected to each H-bridge to surpass the faulty  H-bridge. The complete analysis with all control structures is designed in MATLAB/Simulink representing dynamic graphs and feasibility of proposed method is verified.
Analysis of High Voltage High Power Resonant Converters Bhuvaneswari C; R. Samuel Rajesh Babu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (382.009 KB) | DOI: 10.11591/ijpeds.v9.i1.pp174-179

Abstract

Various Resonant Converters for high voltage and high power applications have been designed. Different Topologies of LLC, LCC, and CLL Resonant Converters have been simulated and compared for the same input voltage. The simulation was done at a very high frequency. The Output Power and the Efficiency of all the three Resonant Converters were calculated.With the results, it has been proved that LCC Resonant Converters were very much suited to give an output voltage of around 62 Kilovolts with a output power of 20 kilowatts.
Direct Torque Control Strategy of PMSM Employing Ultra Sparse Matrix Converter Muldi Yuhendri; Ahyanuardi Ahyanuardi; Aswardi Aswardi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.171 KB) | DOI: 10.11591/ijpeds.v9.i1.pp64-72

Abstract

Matrix converter is a good choice for Permanent Magnet Synchronous Motor (PMSM) drives, because it has high power density and does not require dc-link energy storage. the disadvantages of conventional matrix converter is using 18 active switches, so it becomes expensive and the modulation method becomes more complicated than back to back converter. To minimize this problem, this paper proposes variable speed drive of PMSM using Ultra Sparse Matrix Converter (USMC) based on Direct Torque Control (DTC) methods. This converter uses only 9 active switches, making it cheaper than conventional matrix converter. DTC is designed based on Space Vector Modulation (SVM) to reduce torque and flux ripples due to  the hysteresis control in conventional DTC. The simulation results show that DTC based SVM using USMC effectively controls the rotor speed with low torque and flux ripples.