cover
Contact Name
Zulfakriza
Contact Email
zulfakriza@gmail.com
Phone
+6281360729183
Journal Mail Official
secretariat@hagi.or.id
Editorial Address
Patra Jasa Tower, 18th Floor (Suite 1820), Jl. Gatot Subroto Kav. 32-34, Kuningan Jakarta Selatan
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Geofisika
ISSN : 0854352     EISSN : 24776084     DOI : https://doi.org/10.36435/jgf
Core Subject : Science,
Jurnal Geofisika [e-ISSN : 2477-6084] is a scientific journal published by Himpunan Ahli Geofisika Indonesia (HAGI). This journal is referenced, each paper was assessed and evaluated by editors and reviewers who are experts in the relevant fields and come from education institutions and industry, both from within and outside the country. The published article covers all science and technology including Geophysics, Meteorology, Oceanography, Geology and Geodesy.
Articles 75 Documents
Estimation of Tsunami Inundation and Disaster Mitigation in Bulukumba, Indonesia Imanuela I. Pertiwi; Muhammad H. Fattah; Abdul Rauf
Jurnal Geofisika Vol 16 No 1 (2018): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3014.496 KB) | DOI: 10.36435/jgf.v16i1.13

Abstract

The study aims to determine the potential of earthquake that could lead to tsunamis in the Flores Sea. Furthermore, based on the potential of earthquake magnitude, can be known high run-up of tsunami in the southern coastal region of Bulukumba regency. The height run-up of tsunami can show the vulnerability of tsunami impact and eects spatially based on the eect of land function in the southern coastal area of Bulukumba Regency. To plan an eective mitigation scenario in the southern coastal area of Bulukumba Regency can be based on the vulnerability of tsunami impacts and eects. This study uses secondary data consisting of three data. The condition of land function and the density of community infrastructure is obtained basedon RTRW data of Bulukumba District and Satellite Bing Maps image data; historical data of earthquake events inthe Flores Sea from 1927 to 2016 from the USGS site, and BMKG; as well as topographic data. Field check activityon land function condition is done as a form of conformity of secondary data. The results showed that the potential of seismicity in the Flores Sea is high, with magnitude (M 7 SR) potentially causing tsunamis around it, not least Bulukumba Regency, South Sulawesi Province, Indonesia. The area of tsunami inundation in Bulukumba Regency is 13.617 km2. The coastal area of Ujungbulu sub-district is a dense residential area that has the highest risk to the tsunami with an estimated 3,331 km2 inundation. Land cover in Bontotiro sub-district dominated by vegetation with kerapatandengan interval distance of more than 3 m is seen able to reduce the tsunami with a height of 17 m and 25 m. Tsunami disaster mitigation scenario in Bulukumba regency is to make coastal area as conservation area of coastal forest (mangrove plant) that function as green belt of tsunamiwave holder.
Estimation of Rupture Duration and Mwp Values to Identify Tsunami Generating Earthquakes in Northern Sulawesi Muhammad Fikri Haykal Hiola; A. Nasrurroh
Jurnal Geofisika Vol 17 No 1 (2019): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2038.77 KB) | DOI: 10.36435/jgf.v17i1.382

Abstract

Sulawesi is an area that has a high potential for tsunamis, especially in the North Sulawesi region due to the presence of a Pundungan Mayu subduction resulting from a double collision between the Maluku Sea plate and Halmahera and Sangihe arcs. Analysis of the duration rupture and estimated Mwp has been carried out using the P-wave phase in the North Sulawesi region as one of the tsunami early warning parameters. The data used were teleseismic body wave (300-900) from three earthquake-generating earthquakes with magnitudes above 7 (Sulawesi earthquake November 16, 2008, Celebes earthquake February 11, 2009, Molucca earthquake November 15, 2014) taken from the IRIS waveform catalog with 90 stations BHZ component registrar. The wave used is the P-PP wave phase (20% -90%) with a high frequency bandpass (1-2 Hz) butterworth filter. The results of the duration of the rupture obtained for the Sulawesi earthquake, Celebes earthquake, Molucca earthquake respectively 53.72 s, 52.98 s, 52.50 s. Whereas for Mwp, it has conformity with Mw from the IRIS catalog. So it can be concluded that the tsunami-generating earthquake in Sulawesi has a duration of rupture greater than 50 s which can be categorized as tsunamigenic earthquake (> 50 s) and the use of Mwp can be applied. Keywords : rupture duration, tsunami, Northern Sulawesi, Mwp
Metode Pemetaan Resistivitas Tanah pada Survei Pertanian dengan HUMA EC 1 Edner Lumenta; Tedy Setiawan
Jurnal Geofisika Vol 15 No 2 (2017): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36435/jgf.v15i2.409

Abstract

Survey geosika pertanian masih dapat dibilang baru dan parameter penting dari survei geosika pertanian adalah sifat-sifat tanah (tekstur, struktur, porositas, resistivitas, dan lain-lain). Survei tanah dalam geosika biasanya menggunakan metode resistivitas, induksi elektromagnetik (EMI), dan Ground Penetrating Radar (GPR) karena metode-metode ini cepat dan dapat memperkirakan banyak sifat- sifat tanah, seperti salinitas, konten batu, dan kedalaman air tanah, tetapi metode ini tidak dapat memberikan informasi tentang variasi properti tanah dalam suatu prol tanah. Array wenner adalah salah satu array yang sering digunakan untuk mengukur resistivitas semu tanah dangkal. Array wenner dapat dengan mudah menghitung resistivitas semu tanah di suatu daerah dan sensitivitas instrumen ini tidak sepenting dalam geometri array lain. Besaran arus yang relatif kecil diperlukan untuk mengukur perbedaan potensial. Kerugian array wenner adalah dalam setiap pengukuran, semua elektroda harus dipindahkan ke posisi baru. Secara umum instrumentasi metode resistivitas untuk pemetaan tanah menggunakan kabel karena instrument-instrumen ini dapat digunakan untuk berbagai array, HUMA EC 1 dirancang hanya untuk mengukur resistivitas tanah dangkal dan dengan HUMA EC 1 kita bisa mengukur sifat tanah dangkal dengan lebih cepat, mudah, dan murah. Dalam penelitian ini saya akan mengukur sifat-sifat tanah di daerah Kampung Padi dan di daerah Padaasih dengan OYO McOHM dan HUMA EC 1, dan mengkorelasikan hasil kedua data resistivitas tanah, sehingga kita akan tahu apakah daerah ini baik untuk pertanian.
Studi Pemodelan Metode Time Domain Electromagnetic 3D untuk Model Homogen dan Berlapis Ida Bagus Suananda Yogi; Warsa Warsa
Jurnal Geofisika Vol 15 No 3 (2017): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2203.542 KB) | DOI: 10.36435/jgf.v15i1.16

Abstract

Makalah ini membahas pemodelan sintetik data time-domain electromagnetic (TDEM) 3D untuk model bumi berlapis homogen dan bersifat isotropis. Beberapa model 3D dan bumi berlapis sederhana digunakan dalam pemodelan untuk mengetahui respon model. Pemodelan dilakukan menggunakan metode beda hingga domin-waktu (nite dierence time-domain) secara 3D. Metode beda hingga domin-waktu merupakan metode yang cukup intuitif untuk dipahami karena mengikuti proses induksi medan elektromagnetik di alam. Hasil pemodelan menunjukkan bahwa semakin besar jarak transmitter-recevier, nilai arus yang diinjeksikan dan panjang transmitter, maka struktur dalam akan semakin mudah terdeteksi atau menghasilkan respon sinyal yang masih kuat. Fakta lain adalah bahwa nilai arus sangat berperan sebagai pengali nilai respon, termasuk panjang transmitter jika panjang transmitter tidak lebih besar dari jarak transmitter-receiver. Hasil lainnya adalah bahwa respon sinyal model bumi berlapis hasil pemodelan 1D serupa dengan hasil pemodelan 3D. Dari hasil pemodelan anomali balok secara 3D didapati bahwa dimensi lateral dari anomali balok mempengaruhi respon secara signikan. Namun, pemodelan 1D menghasilkan respon sinyal yang sama untuk model balok yang berbeda. Dari penelitian ini, dapat disimpulkan bahwa pemodelan 3D model homogen isotropis menggunakan parameter akuisisi yang berbeda dapat mempengaruhi intesitas dari respon sinyal yang berujung pada sensitivitas pengukuran untuk mendeteksi anomali tertentu. Hal lain yang perlu dicermati adalah anomali 3D dapat menghasilkan model yang berbeda pada pemodelan 1D dan 3D, sehingga dimensi struktur perlu diperkirakan dalam mengolah data TDEM.
Rock Physics Modelling for Estimating the Quality of Reservoir Tight Sand in Bintuni Basin, West Papua, Indonesia Dona Sita Ambarsari; S. Winardhi
Jurnal Geofisika Vol 16 No 3 (2018): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (972.124 KB) | DOI: 10.36435/jgf.v16i3.386

Abstract

Permeability is a key to determine the quality of reservoir. Reservoir quality can be dened as the ratio between permeability and porosity of a rock. Besides, permeability is not in uenced by porosity solely, there are otherfactors which aect the value of the permeability of a rock. One of them is aected by the pore structure, which includes turtuosity, surface area, and grain size. To determine how much these factors aect the permeability of a rock, it takes an elastic parameters that can be an indicator of the quality reservoir e.g pore space stiness and critical porosity.Primary data such as petrophysics, XRD data, and permeability are used as input data to determine the quality of reservoir. By using Zimmerman's equation and Nur's model, we will get the value of pore space stiness and critical porosity at each point. The combination of rock quality equation derived from Kozeny Carman's with elastic parameters as indicators produces qualitative rock quality identification. Results of this study is able to show that the pore space stiffness and critical porosity can represent turtuosity, surface area, and grain size of a rock which lead to the determination of rock quality. The method proposed in the present study demonstrated an excellence reservoir quality prediction based on the relation between petrophysical parameters with elastic parameters.
Shear Wave Velocity Structure Construction Using Ambient Seismic Noise Tomography (ANT) In Palu, Central Sulawesi F Ikhsan; Tedi Yudistira
Jurnal Geofisika Vol 17 No 2 (2019): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36435/jgf.v17i2.413

Abstract

Palu is located in Central Sulawesi, Indonesia, characterized by a complex geological setting due to the intersection of Indo-Australia Plate, Philippine Plate, and Eurasia Plate. These plates intersection causes one of the most active fault systems in Indonesia with 42 mm/year relative block motion, the Palu-Koro Fault. Palu-Koro Fault system is a left-lateral fault causing the 7.5 Mw Palu-Donggala Earthquake on 28 September 2018. Moreover, the thickness of the sediment layer in Palu ampli_ed the groud motion. So, it is critical to understand more about the Palu-Koro Fault and its geological system that can be very important for hazard study. In this study, Ambient Seismic Noise Tomography (ANT) was applied to understand the Palu-Koro Fault and its geological system. ANT uses the recorded ambient seismic noise events to obtain experimental Greens function by cross-correlating two seismic record data from two seismic station. Technically, ANT is similar to surface wave tomography which produces two dimensional velocity maps. To produce the two dimensional velocity maps, processing sequence consists of the preparation of single station data, stacking, cross-correlation, Frequency-Time Analysis (FTAN), and surface wave tomography. In this study, the vertical component seismic data was processed from 22 stations in Palu to extract the Rayleigh wave dispersion. The entire data was processed at 0,5 - 5 s period range. In addition, depth inversion step was also applied to get the geological features for the further interpretation. The results of this study are the interstation dispersion curves which indicate the group velocity varies between 0.2 and 2 Km/s, the group velocity maps and the shear wave velocity structure at 0,5 5 Km depth. These results show us the existence of the low-velocity anomaly in the northern part of Palu associated with the coastal sediment, the high-velocity anomaly in the west alongside the N-S direction fault, the low-velocity anomaly in the southern eastern part, and three main geological features in Palu based on the East West cross-section. These results lead to an insight that the heavy damage of the Palu-Donggala Earthquake in 2018 was caused by the thickness of the sediment in Palu.
Determination of Groundwater Surface using Damped Least-Squares Inversion in the Bekasap Field, Riau D Pinehas; Warsa Warsa
Jurnal Geofisika Vol 17 No 2 (2019): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36435/jgf.v17i2.414

Abstract

Groundwater is a primary water source for the sustainability of human life. Groundwater is located in the subsurface area in the saturated zone called aquifer. The presence of an aquifer can be identified through a geophysical survey by determining the upper boundary of the aquifer called the groundwater table. DC Resistivity geoelectrical method is one of the geophysical measurements which is effective to be used to determine the depth of the water table. Measurements were performed using the Wenner electrode configuration in Bekasap to attain preferable depth resolution. The process of measurement data modelling yields rms error. In order to reduce the rms error, damped least-squares is applied into the inversion solution. This process will improve the model parameter iteratively until the minimum rms error is obtained. The damped least-squares modeling was tested on three synthetic models which have Resistivity variation. Furthermore, the damped least-squares was applied on the observed data at Bekasap. From the processing and modeling using damped least-squares, the depth of the groundwater table and aquifer can be obtained.
Study of Calculation of Terrain Correction Using square pattern and sloped triangle Method in Karangsambung Area Rafi Salam; Eko Januari Wahyudi; Susanti Alawiyah
Jurnal Geofisika Vol 17 No 2 (2019): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36435/jgf.v17i2.412

Abstract

Conventional assessments of terrain correction are carried out by laying out transparent paper containing the Hammer chart on topographic maps, then estimating the elevation for each compartment. But this procedure has disadvantages, the number of compartments are too small for area with many topographic variations, and there is a subjectivity from the observer in estimating the compartments height. This research aim to overcome these problems and get more accurate terrain correction value. In this research, estimation of terrain correction carried out using square pattern and sloped triangle method. This method divides the area around the measurement point into a zone containing a square-shaped and triangle compartment. The research start with testing the program by using synthetic data to see the effect of rock bodies on terrain correction value. Then the program was applied to Karangsambung to see the topographic influence around Karangsambung on terrain correction. The program is then applied to gravity data, and the results are compared with calculations using the Hammer chart. Based on the synthetic data test, it was found that the value of terrain correction from a rock body measuring 10 x 10 km with a height difference of 1000 m from the station no longer significantly affects at the distance of 20 km. The topography around Karangsambung in the form of South Seraju Ranges with altitude of 1000 m at distance of 20 30 km gives effect of 0.05 mGal on terrain correction, while the Quaternary Volcano with an altitude of 3000 m at distance of 30 40 km gives effect of 0.1 mGal. The results of applying program at the gravity data show that the use of the square pattern method is able to correct errors from Hammer chart up to 3 mGal. The difference between the calculation of the two methods is getting bigger in the station located at slope area. It happens because estimation of the height difference in slope area is more difficult to do.
Integrated Prediction Error Filter Analysis Application On Lake Towuti M Taufik; Ignatius Sonny Winardhi; Satria Bijaksana
Jurnal Geofisika Vol 17 No 2 (2019): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36435/jgf.v17i2.415

Abstract

Every naturally-occurred phenomenon on earth is related to cyclicity. On a larger scale, it can be defined as the occurrence of climate periodicity which is caused by the revolution of earth towards the sun. It can also be examined on a smaller process such as the days and nights cycles, as the effect of earths rotation. This research will specifically discuss about the cyclicity of grain size changes in sediments from lake Towuti, Indonesia. The cyclicity of the sediments is deduced using Integrated Prediction Error Filter Analysis (INPEFA) trends. The INPEFA trends are used to analyse the probability of sediments distribution by simply calculating the cumulative errors between predicted and actual data. Unlike any other implementation of INPEFA that mainly observing lithology controlled by sea level changes, this research is aimed at applying INPEFA to enhance well correlation process across an area that is strongly influenced by rainfall intensity and some climatically-driven processes. By correlating the sediment units, the lateral distribution of the climatically-driven diatom ooze will eventually help a better understanding of paleoclimate events on lake Towuti. This research is aimed at constructing and applying systematic algorithm on INPEFA logs calcultation. Two main cores that construct the INPEFA calculation are trend removal process and autoregressive coefficients calculation using Burgs method. When dealing with real datasets the trend removal process is an imperative process to prevent ambiguous INPEFA trend. Moreover, the use of trend removal process is also favourable in interpreting INPEFA trends for various cyclicity periods, this is achieved by varying the input parameters on the trend removal process. Autoregressive coefficients calculation on the other hand is the keystone that constructs the INPEFA logs calculation process. Well correlations process is successfully achieved through interpreting the INPEFA trends logs. Validation of the INPEFA logs shows good correlation between the result and core sample from lake Towuti with widely-distributed tephra being the main key validator. The changes in INPEFA trends is interpreted to be linked with the change in grain size and also in sediments impedance. Comparing and validating the INPEFA trends with two seismic traces from the lake reveals that the turning point of INPEFA trends are associated with strong reflection on the seismic traces. We approach the building of pseudo-INPEFA section through applying optimum Wiener filter (OWF) during the multi-attribures analysis. The lateral continuation of predicted pseudo-log was improved, overall correlation showed an increase by 15% and a decreased in error value by 25%.
Analysis And Modelling Of Geoelectric Data Modeling For The Identication Of Groundwater aquifer At Cisarua Area, West Bandung A Daniswara; Darharta Dahrin; Setianingsih Setianingsih
Jurnal Geofisika Vol 17 No 2 (2019): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36435/jgf.v17i2.416

Abstract

Groundwater is the main need of society in everyday life. Groundwater is one of renewable resources but it doesn’t mean that it can be exploitated without limit. Several factors that affect the availability of groundwater derived from nature such as geological conditions, rainfall, and green areas should be considered. Water in the soil is stored in a porous layer and has a good permeability is called an aquifer. Cisarua area is located in West Bandung regency, West Java which is a hilly area that has a topography with a slope ranging from normal to steep. The land use in this area is still dominated with plantation and forest as green area. Groundwater aquifer characteristics in that area needs to be examined and analysed for the needs of the community and agricultural business. In this research, the writer used inversion modeling technique of geoelectric data to visualize the condition of subsurface. Resistivity inversion modelling of apparent resistivity data as a result of resistivity method with Wenner-Schlumberger configuration is then carried out with least-square method. The initial model is modified in an iterative manner such that the sum of square error of the difference between the model response and the observed data values is minimized. The result of resistivity modelling is used for analysis of aquifer characteristic such as lithology, depth and structure along with considering geological reference. As the result of modelling, the area of measurement is divided into three zones which are Zone of aeration, Zone of Saturation, and endapan formasi. Zone of aeration is located at depth 0-25 m with resistivity 20-100 Ohm.m and the predicted lithology is gravel or weathered soil. Zone of Saturation (akuifer) is located at depth 25-60 m with resistivity 4-30 Ohm.m and the predicted lithology is sandstone or clay. Endapan Formasi Cibereum is located at more than 60 m from ground with resistivity more than 100 Ohm.m and the predicted lithology is sandy tuff or dry breccia.