cover
Contact Name
Marwan Effendy
Contact Email
arstech@ums.ac.id
Phone
+6287735020086
Journal Mail Official
arstech@ums.ac.id
Editorial Address
Jl. Ahmad Yani Tromol Pos I, Pabelan, Kartasura, Surakarta, Jawa Tengah, 57102 Indonesia
Location
Kota surakarta,
Jawa tengah
INDONESIA
Applied Research and Smart Technology (ARSTech)
ISSN : 27229637     EISSN : 27229645     DOI : https://doi.org/10.23917/arstech.v1i1
Aims International Journal of Applied Research and Smart Technology (ARSTech) is a peer-reviewed, biannual journal that promotes the development and application of smart technologies in various sectors, such as mechanical & materials engineering, automotive & manufacturing process, energy conversion & renewable energy, robotics, mechatronic & artificial intelligent, chemical & biomedical engineering, marine & aerospace technologies, transportations, infrastructures and environment. Smart technologies offer practical and sustainable solutions in the modern life of humankind by employing the latest technological advancements. Scope The journal presents and disseminates new developments and the latest findings in all fields of engineering and technology, especially those that contribute to the implementation of smart technologies. The topics covered by the journal include but are not limited to: autonomous systems, mechatronics and robotics, control systems in automobiles and intelligent transport systems, smart structures, materials, and metallurgy nanotechnologies and advanced materials in engineering application, sustainable and green buildings, green technology and industry 4.0, IoT-based systems, sensor network, artificial intelligence and smart grids, biomedical engineering, bioenergy technologies, design and development of automotive technologies and manufacturing process, vehicle modelling and safety, modelling and simulation (CFD) in engineering application, vehicle design and aerodynamics, applied mechanics, structure and manufacturing technology, material processing and technology for vehicles and other mechanical use, coatings technologies in engineering application, engine technologies and development for vehicles and other engineering application, hybrid and electric vehicle technologies, vehicle braking and suspension systems, thermodynamics application in engineering application, combustion and reacting flows in automotive and other engineering application, applied heat and mass transfer, fluid and thermal engineering, heating and cooling systems (HVAC) in vehicles and engineering application, fuels and lubricants in automotive engineering, development of energy conversion and conservation, new-and-renewable energy, and alternative energy in engineering application, fuel cell and solar energy, the engine technology and emission control, automotive pollution and control, vehicle motion and control systems, noise and vibrations control, pneumatic and hydraulic systems, tribology in engineering application.
Articles 29 Documents
The effectivity of used-oil as quenching medium of 42-CrMo4 steel for automotive materials Hariningsih, Hariningsih; Sumpena, Sumpena; Sukarjo, Heribertus
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology (ARSTech)
Publisher : Department of Mechanical Engineering Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.11

Abstract

The research aims to investigate the effect of the cooling medium on the hardness characteristic and microstructure of the 42CrMo4 steel due to hardening treatment at a temperature of 830°C and holding time of 30 minutes. Various oil such as SAE-10W40, SAE-20W50, SAE-40, and used oil was used in the cooling medium. The changes in product size, hardness, and microstructure have been carefully assessed. The results indicated that the viscosity of the coolant medium strongly influenced the cooling rate of the cooling medium, hardness, and microstructure. SAE-10W40 oil and SAE-20W50 oil only needed 2 hours to return within room temperatures before quenching, whereas SAE-40 oil and used oil took 3 hours. The sample size did not change after hardening-quenching. However, there was a residual carbon layer on the sample surfaces. Quenching caused the changes of microstructure from pearlite and ferrite to ultrafine double phase, consisting of martensite and austenite, which were unable to transform during rapid cooling. The highest hardness value was achieved by the treated product, which was quenched in SAE-10W40, which had 54.59 HRC. The high hardness was attributed to the content of 95% martensite. However, used-oil caused in similar hardness as SAE-20W50.
The effectivity of used-oil as quenching medium of 42-CrMo4 steel for automotive materials Hariningsih Hariningsih; Sumpena Sumpena; Heribertus Sukarjo
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.11

Abstract

The research aims to investigate the effect of the cooling medium on the hardness characteristic and microstructure of the 42CrMo4 steel due to hardening treatment at a temperature of 830°C and holding time of 30 minutes. Various oil such as SAE-10W40, SAE-20W50, SAE-40, and used oil was used in the cooling medium. The changes in product size, hardness, and microstructure have been carefully assessed. The results indicated that the viscosity of the coolant medium strongly influenced the cooling rate of the cooling medium, hardness, and microstructure. SAE-10W40 oil and SAE-20W50 oil only needed 2 hours to return within room temperatures before quenching, whereas SAE-40 oil and used oil took 3 hours. The sample size did not change after hardening-quenching. However, there was a residual carbon layer on the sample surfaces. Quenching caused the changes of microstructure from pearlite and ferrite to ultrafine double phase, consisting of martensite and austenite, which were unable to transform during rapid cooling. The highest hardness value was achieved by the treated product, which was quenched in SAE-10W40, which had 54.59 HRC. The high hardness was attributed to the content of 95% martensite. However, used-oil caused in similar hardness as SAE-20W50.
Performance prediction of trailing-edge cooling system of gas turbine blade using detached eddy simulation Jamaldi, Agus; Hassan, Hassan Khamis
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology (ARSTech)
Publisher : Department of Mechanical Engineering Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.15

Abstract

This study aims to evaluate the performance of the trailing-edge (TE) cooling system in a gas turbine blade. Eddy Simulation (DES), based on the turbulence model of Spallart-Almaras (SA), was used to simulate the TE cooling system. A TE configuration with a five-row staggered pin-fin arrangement was employed as a computational domain. Three parameters, i.e., the coefficient of heat transfer on the pin-fins surface (hpin), the coefficient of discharge (CD), and the effectiveness of adiabatic film cooling were used to assess the performances. The findings denoted that the heat transfer fluctuations occurred on the surface of the pin-fins in each row. The discharge coefficient increased with the rising of the blowing ratio. The trend predicted data of effectiveness were in good agreement with realistic discrepancies compared to other researches, mainly for higher blowing ratio. The average effectiveness along the cut-off region was to be sensitive to the changes of the blowing ratio, which was attributed to the structures of turbulent flow along the mixing region.
Performance prediction of trailing-edge cooling system of gas turbine blade using detached eddy simulation Agus Jamaldi; Hassan Khamis Hassan
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.15

Abstract

This study evaluates the performance of the trailing-edge (TE) cooling system in a gas turbine blade. Eddy Simulation (DES), based on the turbulence model of Spallart-Almaras (SA), was used to simulate the TE cooling system. A TE configuration with a five-row staggered pin-fin arrangement was employed as a computational domain. Three parameters, i.e., the coefficient of heat transfer on the pin-fins surface (hpin), the coefficient of discharge (CD), and the effectiveness of adiabatic film cooling were used to assess the performances. The findings denoted that the heat transfer fluctuations occurred on the surface of the pin-fins in each row. The discharge coefficient increased with the rising of the blowing ratio. The trend predicted data of adiabatic film cooling effectiveness were in good agreement with realistic discrepancies compared to other researches, mainly for higher blowing ratio. The average effectiveness along the cut-off region was to be sensitive to the blowing ratio changes, which was attributed to the structures of turbulent flow along the mixing region.
The effect of internal pressure and thickness on the creep strain of the superheater pipes Riyadi, Tri Widodo Besar; Fatuloh , Sopyan Sahid
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology (ARSTech)
Publisher : Department of Mechanical Engineering Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.21

Abstract

Superheater pipes in turbines commonly are used to produce superheated steam. Internal pressure is critical for steam superheater elements. The pipes in such applications are vulnerable to temperature environments, which can bring the component to enter the creep regime, creep deformation, or even creep fracture. In general, most of the failures in boilers are caused by creep. Creep-resistant materials used in facilities operated at high temperatures must, therefore, be able to withstand the highest possible temperature loads. This study aims to investigate the creep behaviour of a 617 alloys steel steam pipe, which operated within 100,000 hours. The temperature of steam was set at 700?C, and the pressure in the pipe was 35 MPa. Abaqus software based on the finite element method was used in the study. The effect of internal pressure and pipe thickness on the creep strains was observed. The variation of the internal pressure was 35, 37.5, 40, 42.5, and 45 MPa. Whereas, the thickness variations were 30, 35, 40, 45, and 50 mm. The simulation results revealed that an increase in the internal pressure and the decrease of the pipe thickness increase the creep strain. This study can be used to predict the possibility of creep damaged for the superheater pipes operated at high temperatures, which have different thicknesses.
The effect of internal pressure and thickness on the creep strain of the superheater pipes Tri Widodo Besar Riyadi; Sopyan Sahid Fatuloh
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.21

Abstract

Superheater pipes in turbines commonly are used to produce superheated steam. Internal pressure is critical for steam superheater elements. The pipes in such applications are vulnerable to temperature environments, which can bring the component to enter the creep regime, creep deformation, or even creep fracture. In general, most of the failures in boilers are caused by creep. Creep-resistant materials used in facilities operated at high temperatures must, therefore, be able to withstand the highest possible temperature loads. This study aims to investigate the creep behaviour of a 617 alloys steel steam pipe, which operated within 100,000 hours. The temperature of steam was set at 700?C, and the pressure in the pipe was 35 MPa. Abaqus software based on the finite element method was used in the study. The effect of internal pressure and pipe thickness on the creep strains was observed. The variation of the internal pressure was 35, 37.5, 40, 42.5, and 45 MPa. Whereas, the thickness variations were 30, 35, 40, 45, and 50 mm. The simulation results revealed that an increase in the internal pressure and the decrease of the pipe thickness increase the creep strain. This study can be used to predict the possibility of creep damaged for the superheater pipes operated at high temperatures, which have different thicknesses.
Wearable upper limb motion assist robot for eating activity Kashtwari, Uzair; Azlan, Norsinnira Zainul; Shahdad, Ifrah
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology (ARSTech)
Publisher : Department of Mechanical Engineering Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.28

Abstract

Many people all around the world are suffering from various types of disabilities and need to depend on others to perform activities of daily living. One of the essential daily living activities is eating. The disabled people should be able to eat their food independently at any time and place, without relying on the caregivers. This paper presents the development of a new wearable upper limb motion assist robot for helping the disabled to eat by themselves. The motion assists robot consists of two degrees of freedom (DOF) movement, focusing on the two most crucial upper limb movements in eating activity, which is the elbow flexion/extension and forearm pronation/supination. A light-weight material was used for the fabrication of the wearable motion assist robot, and Arduino was utilized as the microcontroller. The originality of the study was in terms of the design, operational sequence setting, and kinematic analysis of the wearable upper limb motion assist robot that was explicitly focusing on eating activity. The resulted prototype was portable, compact, light in weight, simple and low cost. The experimental results have proven that the proposed wearable upper limb motion assist robot for eating activity was successful in helping the users to perform the main upper extremity motions in eating. The success rate of the proposed system was 80%, and it took 6 seconds for the system to complete one feeding cycle.
Wearable upper limb motion assist robot for eating activity Uzair Kashtwari; Norsinnira Zainul Azlan; Ifrah Shahdad
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.28

Abstract

Many people all around the world are suffering from various types of disabilities and need to depend on others to perform activities of daily living. One of the essential daily living activities is eating. The disabled people should be able to eat their food independently at any time and place, without relying on the caregivers. This paper presents the development of a new wearable upper limb motion assist robot for helping the disabled to eat by themselves. The motion assists robot consists of two degrees of freedom (DOF) movement, focusing on the two most crucial upper limb movements in eating activity, which is the elbow flexion/extension and forearm pronation/supination. A light-weight material was used for the fabrication of the wearable motion assist robot, and Arduino was utilized as the microcontroller. The originality of the study was in terms of the design, operational sequence setting, and kinematic analysis of the wearable upper limb motion assist robot that was explicitly focusing on eating activity. The resulted prototype was portable, compact, light in weight, simple and low cost. The experimental results have proven that the proposed wearable upper limb motion assist robot for eating activity was successful in helping the users to perform the main upper extremity motions in eating. The success rate of the proposed system was 80%, and it took 6 seconds for the system to complete one feeding cycle.
Single friction plate clutch design for cars with power of 77 kW and speed of 6000 rpm using finite element method Darmawan, Agung Setyo; Syarif, Junaidi; Purboputro, Pramuko Ilmu; Yulianto, Agus; Hamid, Abdul; Noviyanto, Noviyanto
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology (ARSTech)
Publisher : Department of Mechanical Engineering Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.33

Abstract

A single friction plate clutch is one part of the components in a vehicle that is used to transmit power and rotation from the driveshaft to the driven shaft without slippage. This study aims to compare the results of mathematical calculations with analysis based on finite element methods in the design of a single friction plate clutch such as shaft, spline, friction plate, and spring. The analysis was carried out on the shaft made of S30C, spline made of S30C, friction plates made of steel alloy, and springs made of carbon steel. The component was drawn by Solidworks-17 software and analysed by Abaqus 6.14-5 software based on finite element methods. The study was performed by comparing the sizes of the various elements. A comparison of simulation processes using the stress concept of von-misses was conducted. The results of mathematical calculations with the simulation process were compared, and the maximum deviation was 2.881%. The deviation was considered acceptable. Based on von-misses’ maximum stress, the material was safe to use due to below the yield strength.
Single friction plate clutch design for cars with power of 77 kW and speed of 6000 rpm using finite element method Agung Setyo Darmawan; Junaidi Syarif; Pramuko Ilmu Purboputro; Agus Yulianto; Abdul Hamid; Noviyanto Noviyanto
Applied Research and Smart Technology (ARSTech) Vol. 1 No. 1 (2020): Applied Research and Smart Technology
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v1i1.33

Abstract

A single friction plate clutch is one part of the components in a vehicle that is used to transmit power and rotation from the driveshaft to the driven shaft without slippage. This study aims to compare the results of mathematical calculations with analysis based on finite element methods in the design of a single friction plate clutch such as shaft, spline, friction plate, and spring. The analysis was carried out on the shaft made of S30C, spline made of S30C, friction plates made of steel alloy, and springs made of carbon steel. The component was drawn by Solidworks-17 software and analysed by Abaqus 6.14-5 software based on finite element methods. The study was performed by comparing the sizes of the various elements. A comparison of simulation processes using the stress concept of von-misses was conducted. The results of mathematical calculations with the simulation process were compared, and the maximum deviation was 2.881%. The deviation was considered acceptable. Based on von-misses’ maximum stress, the material was safe to use due to below the yield strength.

Page 1 of 3 | Total Record : 29