cover
Contact Name
Suhartono
Contact Email
suhartono@usk.ac.id
Phone
-
Journal Mail Official
jurnal.natural@fmipa.unsyiah.ac.id
Editorial Address
Block A 2nd Floor FMIPA USK Jl. Tegk. Syech Abdurrauf No. 3, Banda Aceh, 23111, Indonesia
Location
Kab. aceh besar,
Aceh
INDONESIA
Jurnal Natural
ISSN : 14118513     EISSN : 25414062     DOI : https://doi.org/10.24815/jn
Jurnal Natural (JN) aims to publish original research results and reviews on sciences and mathematics. Jurnal Natural (JN) encompasses a broad range of research topics in chemistry, pharmacy, biology, physics, mathematics, statistics, informatic and electronic.
Articles 10 Documents
Search results for , issue "Volume 17, Number 2, September 2017" : 10 Documents clear
SEMI-IMPLICIT NUMERICAL SCHEMA IN SHALLOW WATER EQUATION safwandi safwandi; Syamsul Rizal; Tarmizi Tarmizi
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (428.484 KB) | DOI: 10.24815/jn.v17i2.7998

Abstract

Abstract. A two-dimensional shallow water equation integrated on depth water based on finite differential methods. Numerical solutions with different methods consist of explicit, implicit and semi-implicit schemes. Different methods of shallow water equations expressed in numerical schemes. For bottom-friction is described in semi-implicitly. This scheme will be more flexible for initial values and boundary conditions when compared to the explicit schemes.  Keywords: 2D numerical models, shallow water equations, explicit and semi-implicit schema.Reference Hassan, H. S., Ramadan, K. T., Hanna, S. N. 2010. Numerical Solution of the Rotating Shallow Water Flows with Topography Using the Fractional Steps Method, Scie.Res,App.Math. (1):104-117. Omer, S, Kursat, K. 2011. High-Order Accurate Spectral Difference Method For Shallow Water Equations. IJRRAS6. Vol. 6. No. 1. Kampf, J. 2009. Ocean Modelling for Beginners. Springer Heidelberg Dordrecht. London, New York. Wang, Z. L., Geng, Y. F. 2013. Two-Dimensional Shallow Water Equations with Porosity and Their Numerical scheme on Unstructured Grids. J. Water Science and Engineering. Vol. 6, No. 1, 91-105. Saiduzzaman, Sobuj. 2013. Comparison of Numerical Schemes for Shallow Water Equation. Global J. of Sci. Fron. Res. Math. and Dec. Sci. Vol. 13 (4). Sari, C. I., Surbakti, H., Fauziyah., Pola Sebaran Salinatas dengan Model Numerik Dua Dimensi di Muara Sungai Musi. Maspari J. Vol. 5 (2): 104-110. Bunya, B., Westerink, J. J. dan Shinobu, Y. 2004. Discontinuous Boundary Implementation for the Shallow Water Equations. Int. J. Numer. Meth. Fluids 2005 (47): 1451–1468. 
ANTIMICROBIAL ACTIVITY OF METHANOL EXTRACT FROM STEM BARK OF Cinnamomum sintoc Nurdin Saidi; Hira Helwati; Lailatul Qhadariah Lubis; Muhammad Bahi
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (154.546 KB) | DOI: 10.24815/jn.v17i2.8049

Abstract

Antimicrobial activity of methanol extract from stem bark of Cinnamomum sintoc has been evaluated against Candida albicans, Staphylococcus aureus and Escherichia coli. The extraction of compound was carried out by maceration, then isolation by column chromatograph, which yielded five (5) subfractions (A-E). Activity against fungus C. albicans, S. aureus bacteria dan E. coli using agar dilution method in paper disk. Methanol extract was not potent against antifungal activity but shows antibacterial activity with medium category. Subfraction C showed that antibacterial activity against S. aureus and E. coli with weak category, but subfractions D and E did not show any activity.
SHALLOW WATER EQUATION SOLUTION IN 2D USING FINITE DIFFERENCE METHOD WITH EXPLICIT SCHEME Nuraini Nuraini; Syamsul Rizal; Marwan Ramli
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (121.801 KB) | DOI: 10.24815/jn.v17i2.7997

Abstract

Abstract. Modeling the dynamics of seawater typically uses a shallow water model. The shallow water model is derived from the mass conservation equation and the momentum set into shallow water equations. A two-dimensional shallow water equation alongside the model that is integrated with depth is described in numerical form. This equation can be solved by finite different methods either explicitly or implicitly. In this modeling, the two dimensional shallow water equations are described in discrete form using explicit schemes.Keyword: shallow water equation, finite difference and schema explisit.REFERENSI 1. Bunya, S., Westerink, J. J. dan Yoshimura. 2005. Discontinuous Boundary Implementation for the Shallow Water Equations. Int. J. Numer. Meth. Fluids. 47: 1451-1468.2. Kampf Jochen. 2009. Ocean Modelling For Beginners. Springer Heidelberg Dordrecht. London New York.3. Rezolla, L 2011. Numerical Methods for the Solution of Partial Diferential Equations. Trieste. International Schoolfor Advanced Studies.4. Natakussumah, K. D., Kusuma, S. B. M., Darmawan, H., Adityawan, B. M. Dan  Farid, M. 2007. Pemodelan Hubungan Hujan dan Aliran Permukaan pada Suatu DAS  dengan Metode Beda Hingga. ITB Sain dan Tek. 39: 97-123.5. Casulli, V. dan Walters, A. R. 2000. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Meth. Fluids. 32: 331-348.6. Triatmodjo, B. 2002. Metode Numerik  Beta Offset. Yogyakarta.
DESIGNING APPLICATION OF ANT COLONY SYSTEM ALGORITHM FOR THE SHORTEST ROUTE OF BANDA ACEH CITY AND ACEH BESAR REGENCY TOURISM BY USING GRAPHICAL USER INTERFACE MATLAB Durisman Durisman; Marwan Ramli; Siti Rusdiana
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (312.387 KB) | DOI: 10.24815/jn.v17i2.7920

Abstract

Banda Aceh city and Aceh Besar Regency are two of the leading tourism areas located in the province of Aceh. For travelling, there are some important things to be considered, such as determining schedule and distance of tourism. Every tourist certainly chooses the shortest route to reach the destination since it can save time, energy, and money. The purpose of this reserach is to develop a method that can be used in calculating the shortest route and applied to the tourism of Banda Aceh city and Aceh Besar regency. In this reserach, Ant Colony Optimization algorithm is used to determine the shortest route to tourism of Banda Aceh city and Aceh Besar regency. From the analysis made by using both manual calculation and  GUI MATLAB program application test, the shortest route can be obtained with a minimum distance of 120.85 km in one travel. Based on the test result, the application for tourism (in Banda Aceh city and Aceh Besar regency) shortest route searching built by utilizing the Ant Colony Optimization algorithm can find optimal route. Keyword: tourism, the shortest route, Ant Colony Optimization
ADSORPTION CHARACTERISTIC OF IRON ONTO POLY[EUGENOL-CO-(DIVINYL BENZENE)] FROM AQUEOUS SOLUTION Fitrilia Silvianti; Dwi Siswanta; Nurul Hidayat Aprilita; Agung Abadi Kiswandono
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (561.316 KB) | DOI: 10.24815/jn.v17i2.8076

Abstract

A study on the adsorption characteristic of Iron onto Poly[eugenol-co-(divinyl benzene)] (EDVB) from aqueous solution has been conducted. EDVB was produced and characterized by using FTIR spectroscopy. The adsorption was studied by a batch method by considering the factors affecting the adsorption such as initial metal ion concentration, adsorption selectivity, and mechanism of adsorption using a sequential desorption method. The adsorption of Iron onto EDVB followed a pseudo-2 order kinetics model with the rate constant of 0,144 L2 mmol-1 min-1. The adsorption isotherm was studied with Tempkin, Langmuir and Freundlich models. The adsorption capacity (Qmax) obtained by Langmuir isotherms was 250mg.L-1 while the equilibrium value was 0.8 Lmg-1. A competitive adsorption study showed that EDVB is adsorbed selectively towards Iron rather than Chromium, Coppers and Cadmium ions. The interaction type of Iron onto EDVB was determined by a sequential desorption.Keywords: Polyeugenol; divinyl benzene (DVB); adsorption; Iron; FeReferencesAbasi, C. Y.; Abia, A.A.; Igwe, J.C. Adsorption of Iron (III), Lead (II) and Cadmium (II) Ions by Unmodified Raphia Palm (Raphia hookeri) Fruit Endocarp. Environ. Res. 2011, 5 (3), 104-113, ISSN: 1994-5396, Medwell Journals. DOI: 10.3923/erj.2011.104.113Baes, F. C.; Mesmer, R. E. The Hydrolisis of Cations; John Wiley: New York, 1976Bakatula, E.N.; Cukrowska, E.M.; Weiersbye, L.; Mihali-Cozmuta, L.;Tutu, H. Removal of toxic elements from aqueous solution using bentonite modified with L-histidine. Water Sci. Technol.2014, 70 (12),2022-2030, DOI: 10.2166/wst.2014.450Bhattacharyya, K.G.; Gupta, S.S. Adsorption of Fe(III) from Water by Natural and Acid Activated Clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption. 2006, 12 (3), 185-204,DOI : 10.1007/s10450-006-0145-0Carmona, M..; Lucas, A.D.; Valverde, J.L.; Velasco, B.; Rodriguez, J.F. Combined adsorption and ion exchange equilibrium of phenol on Amberlite IRA-420.Chem. Eng. J.2006, 117, 155-160, Doi : 10.1016/j.cej.2005.12.013Debnath, S.; Ghosh, U.C. Kinetics, isotherm and thermodynamics for Cr(III) and Cr(VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. J. Chem. Thermodin. 2008, 40: 67-77, DOI: 10.1016/j.jct.2007.05.014Djunaidi, M.C.; Jumina; Siswanta, D.; Ulbricht, M. Selective Transport of Fe(III) Using Polyeugenol as Functional Polymer with Ionic Imprinted Polymer Membrane Method. Asian J. Chem. 2015, 27 (12): 4553-4562, DOI : 10.14233/ajchem.2015.19228Febriasari, A.; Siswanta, D.; Kiswandono, A.A.; Aprilita, N.H. Evaluation of Phenol Transport Using Polymer Inclusion Membrane (PIM) with Polyeugenol as a Carrier. Jurnal Rekayasa Kimia dan Lingkungan. 2016, Vol. 11, No. 2, 99-106, DOI: 10.23955/rkl.v11i2.5112Foldesova, M.; Dillinger, P.; Luckac, P. Sorption and Desorption of Fe(III) on Natural and chemically modified zeolite. J. Radioanal. Nucl. Chem. 1999, Vol. 242, No. 1 (1999), 227-230, DOI: 10.1007/BF02345926Gupta, V.K.;Sharma, S. Removal of cadmium and zinc from aqueous solutions using mud.Environ. Sci. Technol. 2002, 36: 3612-3617, DOI: 10.1021/es020010vHandayani, D.S. Sintesis kopoli(eugenol-DVB) sulfonat dari Eugenol Komponen Utama Minyak Cengkeh Szygium aromaticum (Synthesis of copoly(eugenol-DVB) sulfonic from main components of eugenol clove oil Szygium aromaticum). Biopharmacy Journal of Pharmacological and Biological Sciences. 2004, 2 (2): 53-57 ISSN: 1693-2242. url : https://eprints.uns.ac.id/id/eprint/856Harimu, L.; Matsjeh, S.; Siswanta, D.; Santosa, S.J. Synthesis of Polyeugenyl Oxyacetic Acid as Carrier to Separate Heavy Metal Ion Fe(III), Cr(III), Cu(II), Ni(II), Co(II), and Pb(II) that Using Solvent Extraction Mehod. Indo. J. Chem. 2009, 9 (2): 261-266.Ho, Y.S.; McKay, G. Pseudo-second Order Model for Sorption Processes. Process. Biochem. 1999, 34, 451-465, DOI: 10.1016/S0032-9592(98)00112-5Ho, Y.S.; McKay, G.; Wase, D.A.J.;Forster, C.F. Study of Sorption Divalent Metal Ions on to Peat. Adsorpt. Sci. Technol. 2000, 18: 639-650. DOI : 10.1260/0263617001493693Indah, S.; Helard, D.;Sasmita, A. Utilization of maize husk (Zea mays L.) as low-cost adsorbent in removal of iron from aqueous solution. Water Sci. Technol. 2016, 73 (12), 2929-2935, DOI: 10.2166/wst.2016.154Kiswandono, A.A.; Siswanta, D.; Aprilita, N.H.; Santosa, S.J. Transport of Phenol through inclusion polymer membrane (PIM) using copoly(Eugenol-DVB) as membrane carries. Indo .J. Chem. 2012, 12 (2): 105-112. Doi : 10.22146/ijc.667Kousalya, N.; Gandhi, M.R.; Sundaram, C.S.; Meenakshi, S. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid bio-composites for the removal of Fe(III).Carbohyd. Polym. 2010, 82: 594-599, DOI:10.1016/j.carbpol.2010.05.013Kumar, K.V.; Porkodi, K.;Rocha, F. Langmuir-Hinshelwood kinetics – A theoretical study, Catalysis Communications. 2008, 9: 82-84, DOI:10.1016/j.catcom.2007.05.019Masel, R.I. Principles Adsorption and Reaction on Solid Surface; John Wiley Sons: Canada, 1996Moore, J. W.; Pearson, R.G. Kinetics and Mechanism Third Edition; John Wiley Sons: Canada, 1981.Ngah, W.S.W.; Ghani, S.A.; Kamari, A. Adsorption Behaviour of Fe(II) and Fe(III) Ions in Aqueous Solution on Chitosan and Cross-linked Chitosan Beads. Bioresource. Technol. 2005, 96: 443-450. DOI:10.1016/j.biortech.2004.05.022Rahim, E.A.; Sanda, F.; Masuda, T. Synthesis and Properties of Novel Eugenol-Based Polymers. Polymer Bulletin. 2004, Vol. 5, 93-100, DOI: 10.1007/s00289-004-0272-2Samarghandi, M.R.; Hadi. M.; Moayedi, M.; Askari, F.B. 2009. Two Parameter Isotherms of Methyl Orange Sorption by Pinecone Derived Activated Carbon. Iran. J. Environ. Health Sci. Eng., 6 (4): 285-294.Setyowati, L. 1998. Pengaruh Penambahan Divinil Benzena (DVB) pada Kopolimerisasi Kationik Poli[eugenol-co-(divinil benzena)] dan Sifat Pertukaran Kation Kopoligaramnya (The Effect of divinylbenzene (DVB) Addition to Eugenol-DVB Cationic Copolymerization and Its Use As Cation-Exchanger), Thesis, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia.Shi, T.; Jia, S.; Chen, Y.; Wen, Y.; Du, C.; Guo, H.; Wang, Z. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution. J. Hazard. Mater. 2009, 169: 838-846, DOI: 10.1016/j.jhazmat.2009.04.020Sun, S.;Wang, A. Adsorption Kinetics of Cu(II) Ions Using N,O-Carboxymethyl-Chitosan. J. Hazard. Mater. 2006, B131: 103-111, DOI: 10.1016/j.jhazmat.2005.09.012Sun, S.; Wang, L.;Wang, A. Adsorption Properties of Crosslinked Carboxymethyl-chitosan Resin With Pb(II) as Template Ions. J. Hazard. Mater. 2006, B136: 930-937, DOI: 10.1016/j.jhazmat.2006.01.033Uzun, I.; Guzel, F. Adsorption of Some Heavy Metal Ions from Aqueous Solution by Activated Carbon and Comparison of Percent Adsorption Result of Activated Carbon with those of Some Other Adsorbents. Turk. J. Chem. 2000, 24: 291-297.Zou, X.; Pan, J.; Ou, H.; Wang, X.;Guan, W.; Li, C.; Yan, Y.; Duan, Y. Adsorptive removal of Cr(III) and Fe(III) from aqueous solution by chitosan/attapulgite composites: Equilibrium, thermodynamics and kinetics. Chem. Eng. J. 2011, 167: 112-121, DOI: 10.1016/j.cej.2010.12.009 
TEACHING MEDIA DEVELOPMENT OF MATHEMATIC IN THE MATERIALS TRIGONOMETRY SUM AND TWO ANGLES DIFFERENCE BY USING GUI MATLAB Cut Mulyawati; Salmawaty Salmawati; Muhammad Subianto; Reza Wafdan
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (593.941 KB) | DOI: 10.24815/jn.v17i2.7032

Abstract

Abstract. The aim of this research is to develop teaching media for mathematics specifically for materials on trigonometry using GUI Matlab. This media can be used as teaching and learning aid for students at senior high school, grade XI in the first semester. This learning media consists of instructions on how to use the media, learning materials, exercises and profile. The trigonometry materials which are discussed in this learning media consist of the sum and difference of two angles. The limitation on the angles that can be used are special angles in the interval -360o £ a,b £ 360o. The special angles are 0o, ±30o, ±45o, ±60o, ±90o, ±120o, ±135o, ±150o, ±180o, ±210o, ±225o, ±240o, ±270o, ±300o, ±315o, ±330o, and ±360o. The trigonometry functions such as sinus, cosine and as well as the operation addition (+) and subtraction (-) can be selected by hitting the appropriate button. Within each step, there is a check button and a next button to check the input true or false. If the value that entered incorrectly then the next step will not displayed and warning box will appear to report the location of error. Users have to fix the error in order to continue to the next step.  Keywords: teaching learning media, trigonometry, GUI Matlab
A REVIEW: MICROPROPAGATION OF PHALAENOPSIS sp FROM LEAF AND FLOWER STALK EXPLANTS Meutia Zahara
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (128.793 KB) | DOI: 10.24815/jn.v17i2.8130

Abstract

Abstract Phalaenopsis orchids are recognized as the most popular orchid genus in the world, especially in horticultural industry due to their large, colorful, and durable flowers as well as their wider adaptability to room conditions. The characteristics of seedling propagated by vegetative means are not uniform; therefore, propagation through tissue culture is desirable. Although the micro propagation of Phalaenopsis has shown very good development, but the wide spread of micro propagation still limited due some problems such as the exudation of phenolic compounds, the PGR concentration, the media used, somaclonal variation, the chosen explants, etc. This paper endeavor to include some important investigations based on the common explants used; leaf and flower stalk. Keywords: Micropropagation, Phalaenopsis, leaf explant, flower stalk ReferencesAnonymous. Orchid (Orchidaceae). Diakes tanggal 13 Januari 2013 dari http://www.rainforest-alliance.org/kids/species-profiles/orchid. Rainforest Alliance. 2002.Pillon, Y.; Chase, M. W.Taxonomic exaggeration and its effects on orchid conservation. Conservation Biology. 2007, 21, 263–265.Thengane, S. R.; Deodhar, S. R.; Bhosle, S. V.; Rawal, S. K. Direct somatic embryogenesis and plant regenaration in Garciniaindica Chois’. Current Science. 2006, 91(8), 1074-1078.Yuswanti, H.; Dharma, I. P.; Utama. ; Wiraatmaja, I. W. Mikropropagasi anggrek Phalaenopsis dengan menggunakan eksplan tangkai bunga. AGROTROP. 2015, 5(2): 161-166.Raynalta, E.; Sukma, D.  Pengaruh komposisi media dalam perbanyakan protocorm like bodies, pertumbuhan plantlet, dan aklimatisasi Phalaenopsis amabilis. J. Hort. Indonesia. 2013, 4(3): 131-139.Kosir, P.; Skof, S.; Luthar, Z. Direct Shoot Regeneration from Nodes of Phalaenopsis of Orchids. Acta Agriculturae Slovenica. 2004, 83, 233–242.Arditti, J. R. ; Ernst. Micropropagation of Orchids. Wiley-Interscience. New York, 1993.Park, Y. S.;Kakuta, S.; Kano, A.; Okabe, M.Efficient propagation of protocorm-like bodies of Phalaenopsis in liquid medium. Plant Cell, Tissue and Organ Culture. 1996, 45, 79–85.Park, S. Y. ; Yeung, E. C.; Chakrabarty, D. ; Paek, K. Y. An efficient direct induction of protocorm-like bodies from leaf subepidermal cells of Doritaenopsis hybrid using thin-section culture. Plant Cell Reports. 2002, 21, 46–51.Zahara, M.; Datta, A.; Boonkorkaew, P. Effects of sucrose, carrot juice and culture media on growth and net CO2 exchange rate in Phalaenopsis hybrid ‘Pink’. ScientiaHorticulturae. 2016,205, 17–24.Hee, K. H.; Loh, C. S.; Yeoh, H. H. In vitro flowering and rapid in vitro embryo production in Dendrobium Chao Praya Smile (Orchidaceae). Plant Cell Reports. 2007, 26, 2055–2062.Kannan, N. An in vitro study on micropropagation of Cymbidium orchids. Current Biotica. 2009, 3, 244–250.Steward, Jr. N. C. Plant Biotechnology and Genetics. Willey, A john Willey Sons, INC., Publication. 2008.George, E. F.; Sherington, P. D.Biotechnology by tissue culture. Exegetics Ltd. 1994.Nursyamsi. Teknik kultur jaringan sebagai alternatif perbanyakan tanaman untuk mendukung rehabilitasi lahan. Makalah pada ekspose hasil-hasil penelitian balai penelitian kehutanan makasar. Makasar, 2010.Aditi, J. F. L. S.; Krikorian, A. D. Orchid mircropropagation: the path from laboratory to commercialization and an account of several unappreciated investigators. Botanical Journal of of the Linnean Society. 1996, 122: 183-241.Gunawan, L. W. Teknik Kultur Jaringan Tanaman. Pusat Antar Universitas (PAU) Bioteknologi IPB. 1998. Bogor.Chugh, S. Guha, S.; Rao, I. U. Micropropagation of orchids: A review on the potential of different explants. Scientia Horticulturae. 2009, 122, 507–520.Ramdan. Kultur daun dan pangkal batang in vitro anggrek bulan raksasa (Phalaenopsis gigantea J.J.Smith) pada beberapa media kultur jaringan. Departemen agronomi dan hortikultura, Fakultas pertanian IPB. 2011.Latip, M. A. R.; Murdad, Z. A.; Aziz, L. H.; Ting, L. M.; Govindasamy.; R. Pipin. Effects of N6-Benzyladenine and Thidiazuron on Poliferation of Phalaenopsis gigantea Protocorm. AsPac J. Mol. Biol. Biotechnol. 2010, 18(1): 217-220 p.Niknejad, A.; Kadir, M. A.; Kadzimin, B. S. In vitro plant regeneration from protocorms-like bodies (PLBs) and callus of Phalaenopsis gigantea (Epidendroidaceae: Orchidaceae). African Journal of Biotechnology.2010, 10, 11808–11816.Chen, J. T.; Chang, W. C. Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biologia Plantarum. 2006, 50, 169–173.Zahara, M. Disertasi doktor: The Effects of Plant Growth Regulators and Natural Additives on Direct Shoot Regeneration and Plantlet Growth of Phalaenopsis hybrid ‘Pink’. Asian Institute of Technology, Pathumthani. Thailand. 2016.Xu, C. J.; Li, H.; Zhang, M. G. Preliminary studies on the elements of browning and the changes in cellular texture of leaf explant browning in Phalaenopsis. Acta Horticulturae Sinica. 2005, 32, 1111–1113.Tokuhara, K; Mii, M. Induction of embryonic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cellular Developmental Biology–Plant. 2001, 37, 457–461Balilashaki, K.; Naderi, R.; Kalantari, S.; Soorni, A. Mircropropagation of Phalaenopsis amabilis cv Cool ‘Breeze’ with using flower stakl nodes and leaves of sterile obtained from node cultures. IJFAS, 2014.Semiarti, E.; Indrianto, A.; Purwanto, A. Agrobacterium-Mediated transformation of Indonesian orchids for  micropropagation, genetic transformation, Prof. MarÃa Alvarez (Ed.), ISBN: 978-953-307-364-4, InTech, 2011. Available from: http://www.intechopen.com/books/ genetic-transformation/agrobacterium-mediated-transformation-ofindonesian-orchids-for-micropropagation.
DETERMINATION OF VITAMIN C IN SEVERAL VARIETIES OF MELON FRUITS BY TITRATION METHOD Nerdy Nerdy
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (368.973 KB) | DOI: 10.24815/jn.v17i2.8255

Abstract

Abstract. Vitamin C (ascorbic acid) is micronutrient that is water soluble and indispensable for the body's metabolism, also plays a role in immune function. Vitamin C are easy to be absorbed actively. One of the fruits that contain vitamin C is melon fruit. Many varieties of melon fruit affect the vitamin C levels. The levels of vitamin C can be determined by 2,6-dichloroindophenol titration method using 2,6-dichloroindophenol solution. The advantages of the 2,6-dichloroindophenol titration method in the determination of vitamin C levels is reductor substances other than vitamin C are not oxidized by 2,6-dichloroindophenol. The examination begins with the determination of equivalence of 2,6-dichloroindophenol solution to vitamin C and followed by determination of vitamin C levels in several varieties of melon fruit. Equivalence of 2,6-dichloroindophenol solution to vitamin C was obtained 0,1347 mg vitamin C per 1 mL 2,6-dichloroindophenol solution. Levels of vitamin C in various varieties of melon fruit obtained that the highest levels was in Golden Melon variety (9,209 mg vitamin C per 100 g of Golden Melon) while the lowest levels was in Langkawi Melon variety (0,335 mg of vitamin C per 100 g of Langkawi Melon). It can be concluded that vitamin C levels contained in melon fruit vary and depend on melon fruit varieties.Keywords: Vitamin C, Ascorbic Acid, Melon Fruits, Varieties, Titration MethodREFERENCE S. Almatsier, 2001, Prinsip Dasar Ilmu Gizi, Gramedia Pustaka Utama, Jakarta, 152-153, 185-186.F. Prajnanta, 2003, Melon: Pemeliharaan secara Intensif dan Kiat Sukses Beragribisnis. Penebar Swadaya, Jakarta, 3, 30.R. Rukmana, 2007, Melon Hibrida, Kanisius, Yogyakarta, 11, 13-15, 16.B. Samadi, 2007, Melon: Usaha Tani dan Penanganan Pascapanen, Kanisius, Yogyakarta, 19, 23, 25-28, 31.P.M. Wijoyo, 2009, Panduan Praktis Budi Daya Melon, Bee Media Indonesia, Jakarta, 14-17, 55.I.G. Gandjar, dan A. Rohman, 2007, Kimia Farmasi Analisis, Pustaka Pelajar, Yogyakarta, 249.N. Andarwulan, dan S. Koswara, 1992, Kimia Vitamin, Rajawali Press, Bogor, 14-20, 32-35, 235.Direktorat Jenderal Pengawasan Obat dan Makanan Departemen Kesehatan Republik Indonesia, 1995, Farmakope Indonesia, Edisi Ke-4, Departemen Kesehatan Republik Indonesia, Jakarta, 1215-1216.W. Horwitz, 2002, Official Methods of Analysis of Association Offical Analytical Chemist Internasional, Edisi Ke-42, Association Offical Analytical Chemist International Suite, Maryland, 16-17.10. J.N. Counsell, and D.H. Hornig, 1981, Vitamin C, Applied Science Publisher, London, 123-124.11. R.M. Astrid, 2016, Cara Cerdas Berkebun Emas Dengan Menanam Melon, Villam Media, Depok, 67. 
DETERMINATION OF RADON CONCENTRATIONS IN DWELLING IN ACEH Wahyudi Wahyudi; Dadong Iskandar; Rini Safitri; Kusdiana Kusdiana
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (175.238 KB) | DOI: 10.24815/jn.v17i2.8154

Abstract

Abstract. Determination of radon concentrations in dwelling in Aceh region by using a passive method has been conducted. In this research, area considered was divided into several sections called grid. Each grid represents an area of 60 km x 60 km in which, depend on public response, 6-10 passive radon monitors were installed. The number of passive radon monitors installed in Aceh is 200 units, and they can be taken back as many as 191 units or 95.50 %. The passive radon monitors have stayed in dwelling for 3-4 months and after period of the exposure, those radon monitors were taken back and brought to laboratory for further process, and then the track were read and the radon concentrations were calculated. Furthermore, data of radon concentration in dwelling and GPS location were put into MapInfo Software v.10.5 to create a map of radon concentration. The results of the analysis of the radon concentration in dwelling in Aceh demonstrate that the concentrations are in the range of 3.32 ± 0.23 Bq/m3 up to 68.30 ± 4.83 Bq/m3. This result was lower than the radon reference level determined by UNSCEAR, which was 300 Bq/m3. The data are useful in the regional extension and development plans, as well as the basis for health policy analysis due to the existence of radon in Indonesia. Furthermore, these data will become the contribution of Indonesia in the international world through UNSCEAR, IAEA and WHO. The data obtained can be used as partial data in creating a map of radon concentration in residents’ houses in Aceh, as a part of the map of radon concentration in Indonesia. Keywords: radon concentration, dwelling, Aceh, passive methodREFERENSI UNSCEAR, 1996, Natural Radiation Exposures, Forty Fifth Session, VienaIAEA, 2005, Radiation, People and the Environment, Viena.Bunawas, Emlinarti, M. Affandi, 1996, Penentuan laju lepasan radon dari bahan bangunan menggunakan metode pasip dengan metode jejak nuklir, Prosiding PPIKRL, PSPKR-BATAN, 20-21 Agustus 1996, pp. 16-21.Sutarman, L. Nirwani, Emlinarti dan A. Warsona, 2005, Penentuan konsentrasi gas radon dan thoron menggunakan detektor film LR-115 di DKI Jakarta dan sekitarnya, Prosiding PPI–PDIPTN P3TM-BATAN, Jogjakarta, p. 212-221.M. Affandi, D. Iskandar, dan Bunawas, 1996, Radon di Kompleks Perumahan BATAN, Presiding PIKRL, PSPKR-BATAN, p. 262-265Wahyudi, Kusdiana and D. Iskandar, 2016, Mapping of Indoor Radon Concentration in Houses Located in South Sulawesi Province, 2nd International Conference on the SERIR2 14th Biennial Conference of the SPERA, Bali, CTRSM-BATAN, p. 35-38.E. Pudjadi, Wahyudi, A. Warsona and Syarbaini, 2016, Measurement of Indoor Radon-Thoron Concentration in  Dwellings of Bali Island, Indonesia, 2nd International Conference on the SERIR2 14th Biennial Conference of the SPERA, Bali, CTRSM-BATAN, p. 186-192.M.H.Magalhães, et al., 2003. Radon-222 in Brazil: an outline of indoor and outdoor measurements. Journal of Environmental Radioactivity, 67(2), pp.131–143.F.S. Al-Saleh, 2007. Measurements of indoor gamma radiation and radon concentrations in dwellings of Riyadh city, Saudi Arabia. Applied Radiation and Isotopes, 65(7), pp.843–848.
TREND ANALYSIS OF EXTREAM RAINFALL FROM 1982 - 2013 AND PROJECTION FROM 2014 - 2050 IN BANDA ACEH AND MEULABOH Farid Mufti; Nazli Ismail; Muksin Umar
Jurnal Natural Volume 17, Number 2, September 2017
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (579.024 KB) | DOI: 10.24815/jn.v17i2.7012

Abstract

Abstract. Climate change is a global phenomenon that currently and seriously impacts the environment. Increasing concentrations of greenhouse gases have caused changes in extreme climate events. We have studied index rainfall extream trend at two meteorological stations of Sultan Iskandar Muda in Banda Aceh and Cut Nyak Dien in Meulaboh from 1982-2013. Daily rainfall data were processed using software of RClimDex to obtain the extreme rainfall index. Such indexes are extreme climate index set by the expert team for Climate Change Detection Monitoring and Indices (ETCCDMI) including of maximum 1-day and 5-days precipitation amount (RX1day and RX5day), total annual precipitation (PRCPTOT), consecutive dry days (CDD), consecutive wet days (CWD), very wet days (R95p), extremely wet days (R99p) and heavy precipitation days (R20mm). Based on our study, we found that the PRCPTOT tend to decrease, whereas occurances of RX1day and RX5day increase. The Banda Aceh station which has a monsoonal pattern is charaterized by increasing in R95p and R99p as well as but decreasing in R20mm. The CWD and CDD tend to accumulate at once. The Meulaboh station that has the type of equatorial rain show decreasing trend in R95p and R99p, but increasing trend in R20mm. The CWD and CDD occur within some days. The projection Representative Concentration Pathways (RCP) 4.5 and 8.5 from 2014-2050 showed an increasing pattern frequency of rain in Banda Aceh and a decreasing pattern in Meulaboh. Keywords: Trend, Extream Climate Index, ProjectionREFERENCE Lutgens. F.K. and Tarbuck. E.J. 2004. The Atmosphere: An Introduction to Meteorology. Pearson Prentice Hall. New Jersey.Ratag, M.A., Halimurrahman, Juaeni, I., Siswanto, B., dan N., Adikusumah. 2002. Perubahan Iklim : Basis Alamiah dan Dampaknya. Bandung, Lembaga Penerbangan dan Antariksa Nasional.IPCC, 2013. Climate Change. World Meteororogical Organization. Switzerland.Nuraini, Ida Sartika. 2014. Analisis dan Proyeksi Trend Temperatur dan Curah Hujan untuk Mendeteksi Perubahan Iklim (Studi Kasus Provinsi Kalimantan Barat). STMKG, Tangerang Selatan.Sulistya, W., Swarinoto, T.S., Zakir, A.,Riyanto, H., dan B., Ridwan.1998. The Impact of El Nino 1997/98 over Indonesia Region. Jakarta: Jurnal Meteorologi dan Geofisika, No 4, Desember.Zhang, X., and Feng Yang, 2004. RClimDex User Manual. Climate Research Branch, Environment Canada, Downsview, Ontario, Canada.Aldrian, E., 2007 Perubahan iklim global dan dampak terhadap iklim benua mantim di laut dan di daratan Prosiding Jumal Club Tahun 2007.Badan Meteorologi dan Geofisika. ISBN:978-979-1241-11-3

Page 1 of 1 | Total Record : 10