cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota denpasar,
Bali
INDONESIA
Jurnal Energi Dan Manufaktur
Published by Universitas Udayana
ISSN : 23025255     EISSN : 25415328     DOI : -
"Jurnal Energi dan Manufaktur" is a journal published by Department of Mechanical Engineering, University of Udayana, Bali since 2006. During 2006-2011 the journal's name was "Jurnal Ilmiah Teknik Mesin CAKRAM" (Scientific journal in mechanical engineering, CAKRAM). "Jurnal Energi dan Manufaktur" is released biannually on April and October, respectively. We invite authors to submit papers from experimental research, review work, analytical-theoretical study, applied study, and simulation, in related to mechanical engineering (energy, material, manufacturing, design) to be published through "Jurnal Energi dan Manufaktur".
Arjuna Subject : -
Articles 14 Documents
Search results for , issue "Vol 3, No.1 April 2009" : 14 Documents clear
Effort to increase an engine performance using electrical ignition system for motor vehicle I Wayan Bandem Adnyana
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (141.481 KB)

Abstract

Increasing engine performances using electrical ignition system on motor vehicle. In accordance with the development oftechnology, improvisation of automotive is created in order to increase the performance of engine. The method to increase thisperformance has been done by modify the ignition system, where the conventional method of ignition system which uses contactbreaker substituted by using capacitor. The improvisation of ignition system has been tested by increasing the speed and load onstationary condition. Results show that the improvisation of ignition system by using capacitor increases the effective power andreduce the specific fuel consumption of engine and reduce the gas emission of CO.
Simulation, Experimental and Analitical Study of Deflection at End Curved Beam Affected by Single Concentrated Load Dewa Ngakan Ketut Putra Negara; Anak Agung Istri Agung Sri Komaladewi
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (355.167 KB)

Abstract

Deflection has an important role in order to design structure or machine component, beside consideration of stresscalculation. This is due to although stress is still smaller then stress allowed by material strength, but probably happen thatdeflection exceeds limit allowed. That condition affects serious hazard on machine elements or structure due to it can affectof component deviate from its main function. One of element which is often experience of deflection is beam. Beams playsignificant roles in many engineering applications, including buildings, bridges, automobiles, and airplane structures. In thisresearch, material to be used was Steel ASTM 1060, with specimen in the form of curved beam. Physical condition of beamwas modeled use of BEAM3 2D. Variation of loads to be applied were W = 100, 150, 200, 250, 300, 350, 400, 450, 500, and550 gr in vertical direction. The result of simulation was verificated by analytical and experimental data. Evaluation wascarried out by statistical test (t-test). The result of simulation is categorized to be good if the result of simulation is samewith analytical and experimental data. The result of research shows that loading has a significant effect on the deflection.The higher load affect the higher of deflection Modeling use of BEAM3 2D gave good result of deflection. This is showedfrom t-test have done, where the result of simulation was same with analytical and experimental data. Other advantage ofsimulation was deflection result obtained was not limited only at the end of beam, but it can predict of deflection at eachnode or point desired
Testing of Model Water Chiller System with Hidrokarbon as a Primer Refrigeran Nengah Suarnadwipa; Ketut Astawa
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (108.227 KB)

Abstract

Now days, there are two issues that give a negative impact on the environment due to the uses of synthetic refrigerant on therefrigeration system and air conditioning system. The first issue was the Ozon Layer Depletion and the second issue was theGlobal Warming. Regarding those condition, it will be investigated the design and examination of performance the use of thesplit type AC system as water chiller system and using hydrocarbon as a primer refrigerant. As a result, in the examination ofthe standard split type AC system using refrigerant R-22, it founded that the cooling rate of 1958 Watt and COP of 5.29.While the examination on the modified split type AC system into water chiller system using hydrocarbon (hycool 22), hasgiven cooling rate of 1832 Watt and COP of 4.19. Finally, it could be councluded that the split type AC system could be usedas water chiller system.
Cycle Time Optimization of Chamomile Package 120 MI Product at Blow Molding Process Yuni Hermawan; I Made Astika
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (294.699 KB)

Abstract

Chamomile is a package which is applied for cosmetic. In industry this package is being processed by blow molding. Thereare many parameters that influence cycle time during production; in this project only three of them were varied, i.e. blowingpressure, blowing time and stopping time. Each parameter is determined three chosen level. Middle level is taken fromstandard setting of machining which is being used by industry. Top and bottom level is randomized. Three stopping time are0.1, 0.55, and 1.0 second. Blowing time are 10.5, 11.5 and 12.5 second. Where as, blowing pressures is 4, 5 and 6 bar.Combination of among levels is based on Box Behnken design. Those three parameters are called variable process. In theother hand, variable responses are cycle time and net weight. Each combination is replicated 5 times and then averaged. Thedata then is processed by using Minitab version 14th. Square regression of the model for cycle time is ?CT = 21,1300 - 0,0912X1 + 0,2000 X2 + 0,6313 X3 + 0,6100 X12 + 0,6975 X22 – 0,1000 X1 X2 – 0,1725 X1 X3 + 0,1100 X2 X3 and Net = 19,2933 –0,0088 X1 + 0,0175 X2 + 0,0712 X3 + 0,0133 X 21 + 0.0158 X22- 0.0217 X 23 + 0.0125 X1X2 - 0,0150 X1 X3 for product netweight. Where X1 is blowing pressure, X2 is blowing time and X3 is stopping time.The model developed then tested by lack offit testing, variance by ANOVA and R square. Second stage of model testing is residual test. Three tests are carry out, i.e.identically test and independency test and normality. Optimization of both values, cycle time and net weight, are searched byResponse Surface Method. By the method it is found that the optimum condition of cycle time is 20.5 seconds and net weightis 19.19 grams. The optimum condition is achieved when stopping is 0.1 second, blowing time 11.35 second and blowingpressure 5.1 bars.
Influence of Blocker Distance Variations in form of Triangle in Front of Cylinder toward Drag Coefficien Si Putu Gede Gunawan Tista
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.459 KB)

Abstract

One of the ways to reduce energy consumption on the air plane and the other bluff bodies are by decreasing the drag. Drag isclosely related to the flow separation. The earlier separation, then the drag will increase more. Based of the fact the effort todecrease drag is conducted by manipulating the field of fluid flow. Stream manipulation was be done by installing Triangleobstacle in front of cylinder. The purpose of this research is to analyze the effect of various distance triangle obstacle in front ofcylinder on drag. The present experiment was done by placing triangle rod in front of the cylinder. In the present research, theexperiment was conducted in the wind tunnel, which consisted of blower, pitot pipe, manometer, cylinder pipe, and triangle rod.The triangle was positioned at L/D = 1.19, L/D = 1.43, L/D = 1.67, L/D = 1.9, L/D = 2.14, L/D = 2.38, L/D = 2.62, and L/D =2.86 by upstream from the cylinder. The triangle was 8 mm uniform side. The Reynolds number based on the cylinder diameter (D= 42 mm) was Re = 1.81 x 104. The research results showed that the triangle rod could decrease the drag of cylinder. Coefficientdrag for cylinder without triangle rod was 0.1276 while the biggest decrease of coefficient of drag with triangle rod washappened at L/D = 1.43 which was 0.0188. It means that the drag of cylinder with triangle rod was 85.25% lower than thecylinder alone.
Assessment Performance of Pumps as Hydro-Turbines Made Suarda
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (231.333 KB)

Abstract

The basic principle work of hydro-turbines are reversal of pumps, therefore, an alternative solution that can be developed inovercoming problem to get hydro turbines are by using pumps, by flowing water in the reverse direction through in thepumps, as hydro turbines. Those are supported by availability of pumps widely in the market and have been mass-producedhence they were relatively cheap. The aims of this research are to determine performances of pumps as turbines - reversepumps. This experiment assesses performance of two small pumps that are centrifugal ‘diffuser-pump’ and ‘volute-pump’ ashydro turbines with various debit and head of water flow resource, such as output-powers and their efficiencies. The resultsshow that the centrifugal diffuser-pump as hydro turbine performs maximum efficiency about 20,6%, where is as pump fromits brochure suppose 47%. In the other hand, the centrifugal volute-pump as turbine achieves maximum efficiency about32%, where is expected 26% as pump from its brochure. Both type of the pumps present that the maximum efficiency asturbines performed at head of water flow resource through the pumps as high as their maximum characteristic head of thepumps. Furthermore, both pumps as turbines generate high shaft revolution that was about 1.500 rpm at their maximumefficiency. Although those efficiencies are considerably low to an ideal efficiency 100%, however, the volute-pump as turbineperforms a reasonably efficiency (32%) that higher than (at least is same as) the efficiency of its pump characteristic (26%),and this pump available very widely in the market. Should be pointed out that bigger dimension pumps propose higherefficiency up to about 86%, therefore they are expected to give higher efficiency as well. So, centrifugal volute-pumps arepotential alternative solution to be used as hydro turbines.
The influence of Compression Ratio to Performance of Four Stroke Engine Use of Arak Bali as a Fuel I Dewa Made Krishna Muku; I Gusti Ketut Sukadana
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (204.437 KB)

Abstract

Arak bali is alternative fuel as ethanol. Ethanol has octane number 108. Octane number which was higher can over come adetonation, and can work at higher compression ratio. This experiment has done to now how the effect of compression ratiovariation to the performance four strokes engine by arak bali fuel. This research was done by changing the compressionratio that is 8,8 : 1, 8,9 : 1, 9 : 1 and 9,3 : 1. The change was done by reducing combustion chamber by scrap the cylinderhead. The result, for the used arak bali fuel to the vehicle is, if engine compression ratio to increase can be influence ofengine performance to be increase and engine fuel consumption to be decrease. For premium is, if engine compression ratioto increase to influence of engine performance to be decrease and engine fuel consumption to be increase.
Study of Fiber Treatment and Water Absorption toward Tensile Stength of Coconut Filtrate/Polyester Composite Putu Lokantara; Ngakan Putu Gede Suardana
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (278.241 KB)

Abstract

Tapis Kelapa (coconut filter) as natural fiber, in this time it resourches very copius but no longer be exploited off hand andwaste though in fact it used for alternative to be composite. The objective of this research is to investigated tensile strength ofcomposite tapis kelapa as reinforcement and epoxy 7120 and hardener versamid 140 as matrix. The fiber is treated with thechemical NaOH with percentage 0,5%, 1% dan 2% in weight, respectively. This research used coconut-tapis fibre which cutas long as 1cm with 0%,5%,7,5%,10% fiber volume fraction, respectively. Soaking time on the water are 24 hour, 48 hour,98 hour and 196 hour, respectively. For testing of speciment in tensile test with ASTM D3039. The result of this researchshown that the composite with no treatment with NaOH have soak the water better than the composite with treatment NaOH.The average of tensile strength with no treatment NaOH less than with treatment NaOH. The highest strength are reached bycomposite with 10% fraction volume on 48 hour soaking time equal to 52 MPa. While the lowest tensile strength are reachedby composite with 0% fraction volume fibre equal to 16,667 MPa. The average of tensile strength that soak in mineral waterbetter than sea water.
Welding Connection Strenght of Aluminium 1100 with Current Variations at Metal Inert Gas (MIG) Welding Process I Dewa Made Krishna Muku
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (365.328 KB)

Abstract

In order to design of machine or building constructions use of welding connection, there are many factors should beconsidered such as skill, knowledge about welding procedures and material characteristics. One parameter of weldingprocedures influencing mechanical characteristic of weld metal is welding current. In this study, strength of aluminium 1100welding connection due to electric current variations at metal inert gas welding process was investigated. Spesimen to beused was standard ASTM E 8. Electric current variations to be set were 150 A, 165 A, 180 A, 195 A and 210 A, with constanvoltage and welding speed were 24 V and 25 inchi/minutes respectivelly. Collected data were evaluated use of analysis ofvariance and regresion analysis.The results of investigation show that; electric current has a significant effect towardstrength of aluminium 1100 welding junction; the characteristic trend to represent relationship between electric current andstrength of aluminium 1100 welding junction is polynomial orde 2; the highest strength of aluminium 1100 welding junctionwas obtained by use of electric current 180 A there was 11,900 kgf/mm2.
Influence of Fixed Temperature of Chilled Water Outlet Setting toward Performance of Chiller Absorbtion with Two Level Heating Cycle Method I Gusti Agung Bagus Wirajati; Made Sucipta
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (178.638 KB)

Abstract

The study investigated the performance of re-heat two stage cycle. This paper presents the working principle and theexperimental results of the reheat two stage adsorption cycle. The performance of the cycle was evaluated under differentheat source temperature and mass recovery time. Coefficient of performance (COP) and cooling capacity have beencalculated to analyze the influences of experimental conditions. The experimental results shown in both COP and coolingcapacity increased along with heat source temperature increased, and mass recovery time is very effective to improve theperformance without increasing heat source temperature.

Page 1 of 2 | Total Record : 14