Claim Missing Document
Check
Articles

Found 12 Documents
Search

Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation Ni Luh Putu Merawati Putu; Ahmad Zuli Amrullah; Ismarmiaty
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 1 (2021): Februari 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v5i1.2587

Abstract

Lombok Island is one of the favorite tourist destinations. Various topics and comments about Lombok tourism experience through social media accounts are difficult to manually identify public sentiments and topics. The opinion expressed by tourists through social media is interesting for further research. This study aims to classify tourists' opinions into two classes, positive and negative, and topics modelling by using the Naive Bayes method and modeling the topic by using Latent Dirichlet Allocation (LDA). The stages of this research include data collection, data cleaning, data transformation, data classification. The results performance testing of the classification model using Naive Bayes method is shown with an accuracy value of 92%, precision of 100%, recall of 84% and specificity of 100%. The results of modeling topics using LDA in each positive and negative class from the coherence value shows the highest value for the positive class was obtained on the 8th topic with a value of 0.613 and for the negative class on the 12th topic with a value of 0.528. The use of the Naive Bayes and LDA algorithms is considered effective for analyzing the sentiment and topic modelling for Lombok tourism.
Analisis dan Perancangan Kamus Interaktif Bahasa Isyarat Indonesia dengan Speech Recognition Ahmad Zuli Amrullah; Khurniawan Eko Saputro
Jurnal Bumigora Information Technology (BITe) Vol 1 No 2 (2019)
Publisher : Prodi Ilmu Komputer Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (283.641 KB) | DOI: 10.30812/bite.v1i2.604

Abstract

ABSTRAK Intisari – Menurut data Survei Sosial Ekonomi Nasional (Susenas) pada tahun 2012 terdapat sekitar 9,9 juta anak Indonesia menyandang disabilitas. Sekitar 7.87% dari total jumlah penyandang disabilitas tersebut mengalami tunarungu atau keterbatasan mendengar. Penyandang tunarungu melakukan komunikasi dengan menggunakan Bahasa isyarat. Karena tidak semua orang mengerti dengan bahasa isyarat maka dibutuhkan alat bantu atau aplikasi untuk berkomunikasi dengan penyandang tunarungu. Keterbatasan dalam berkomunikasi antara orang biasa dengan penyandang tunarungu. Oleh karena ity, untuk membantu mahasiswa dan dosen berkomunikasi dengan mahasiswa yang tunarung maka dibutuhkan aplikasi kamus Bahasa isyarat dengan Speech Recognition. Pengembangan aplikasi ini menggunakan metode pengembangan aplikasi waterfall. Dimana setiap alur berjalan secara selaras dan memudahkan untuk mencari kesalahan system. Pengujian dilakukan dengan verifikasi kebutuhan untuk memastikan produk perangkat lunak yang dihasilkan sesuai dengan spesifikasi yang ditentukan. Kata Kunci: Bahasa isyarat; kamus; speech recognition; ABSTRACT Digest - According to data from the National Socio-Economic Survey (Susenas) in 2012 there were around 9.9 million Indonesian children with disabilities. Around 7.87% of the total number of persons with disabilities experience hearing impairment or hearing impairment. People with hearing impairment communicate using sign language. Because not everyone understands sign language, tools or applications are needed to communicate with deaf people. Limitations in communicating between ordinary people and hearing impaired people. Therefore, to help students and lecturers communicate with students who are fussy, it requires a sign language dictionary application with Speech Recognition. This application development uses the waterfall application development method. Where each flow runs in harmony and makes it easy to find system errors. The test is carried out by verifying the need to ensure that the software product is produced according to the specified specifications. Keywords: Signal language; dictionary; speech recognition;
Pelatihan Pengenalan Data Science untuk Meningkatkan Kemampuan dalam Pengolahan Data Hairani Hairani; Ahmad Zuli Amrullah
Jurnal Abdidas Vol. 1 No. 3 (2020): Vol 1 No 3 July Pages 88-182
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (621.65 KB) | DOI: 10.31004/abdidas.v1i3.31

Abstract

Data science merupakan gabungan ilmu komputer, statistika, dan pengetahuan domain bisnis untuk ekstraksi tumpukan data yang besar menjadi pengetahuan sehingga mendapatkan pattern atau pola-pola yang dapat memudahkan pengambil keputusan. Adapun orang menggeluti bidang data science disebut data scientist. Profesi data scientist akhir-akhir ini menjadi profesi yang sangat seksi di abad 21. Sumber daya manusia yang berprofesi sebagai data scientist di Indonesia sangat sedikit bila dibandingkan ketersedian lapangan kerja dibidang data science. Dengan kata lain, ketersediaan lapangan kerja data science berbanding terbalik dengan ketersediaan SDM yang berprofesi sebagai data scientist, dimana jumlah SDM data scientist sangat sedikit dibandingkan dengan jumlah lapangan kerja yang berlimpah. Salah satu solusi yang ditawarkan adalah mengadakan pelatihan dan workshop untuk pengenalan data science untuk meningkatkan SDM bidang data science khususnya di Universitas Bumigora. Metode pelaksanaan yang digunakan adalah penyampaian materi tentang data science dan simulasi penggunaan metode data science dalam kasus real menggunakan Google Colab. Berdasarkan hasil pelatihan dan workshop yang telah dilaksanakan, dapat meningkatkan pemahaman dan kemampuan para peserta untuk menggunakan metode-metode yang ada pada data science untuk mengolah data menjadi sebuah pengetahuan.
SISTEM KONTROL DAN MONITORING TANAMAN HIDROPONIK BERBASIS INTERNET OF THINGS (IoT) MENGGUNAKAN NODEMCU ESP32 Muh Adrian Juniarta Hidayat; Ahmad Zuli Amrullah
Jurnal SAINTEKOM Vol. 12 No. 1 (2022): Maret 2022
Publisher : STMIK Palangka Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33020/saintekom.v12i1.223

Abstract

The rapid development of Internet of Things (IoT) technology makes its use even more widespread in various fields. IoT is a series of technologies that are combined to create a device that can be controlled remotely via the internet. In this study, IoT technology is applied to control and monitor hydroponic plants using one of the IoT devices, the NodeMCU ESP32. The purpose of this research is to create an automatic nutrition system for hydroponic plants by utilizing various sensors and monitoring the development of hydroponic plants remotely via the internet to see the performance of IoT technology in controlling and monitoring. The results of this study indicate that the application of IoT technology can precisely provide nutrients to hydroponic plants according to the specified time and can transmit data accurately and in real-time via the internet and displayed on web applications that can be accessed from anywhere.
Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square Ahmad Zuli Amrullah; Andi Sofyan Anas; Muh. Adrian Juniarta Hidayat
Jurnal Bumigora Information Technology (BITe) Vol 2 No 1 (2020)
Publisher : Prodi Ilmu Komputer Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (225.868 KB) | DOI: 10.30812/bite.v2i1.804

Abstract

Ulasan film berisi opini atau pandangan penonton terhadap suatu karya film, dalam hal ini gambaran secara umum dan detail sebuah film. Banyaknya respon dari penonton terhadap suatu film belum bisa dikategorikan secara langsung menjadi sebuah sentiment, untuk itu perlunya sebuah sentimen analisis. Analisis sentimen adalah subjek utama dalam machine learning yang bertujuan untuk mengekstrak subjektif informasi dari ulasan tekstual. Pada penelitian ini akan melakukan analisis sentiment pada movie review yang didapat dari IMDB untuk menganalisis respon penonton terhadap film yang mereka tonton kedalam dua kelompok; respon positif dan negatif. Proses analisis dilakukan dengan menggunakan text mining dalam mengekstraksi informasi yang diperoleh dan diklasifikasi dengan Naïve Bayes. Sentimen respon akan diuji dengan Chi Square.
Coaching Class Treding Saham LQ-45 untuk Mahasiswa Universitas Bumigora Ahmad Zuli Amrullah; Gilang Primajati; Siti Soraya
ADMA : Jurnal Pengabdian dan Pemberdayaan Masyarakat Vol 1 No 2 (2021): ADMA: Jurnal Pengabdian dan Pemberdayaan Masyarakat
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2127.216 KB) | DOI: 10.30812/adma.v1i2.1029

Abstract

The main problem faced by these partners is people's understanding of the capital market, both technical and non-technical. For technical problems, the community does not understand how to start stock treding in the capital market regarding the application, methods and tools. Meanwhile, the non-technical obstacles faced are the problem of knowledge about treding how to get good benefits, how to reduce risks, and what types of investment should be made in investing. The solution and target to be achieved is to increase the ability and interest of the community, especially students, to start investing in the capital market with various application tools. The method used in this service is by means of coaching classes accompanied by simulations in the framework of learning development and service learning on stock trading tools affiliated with the Indonesian stock exchange. At the time the service began with learning the basics of the capital market to students then continued with real simulations using a virtual account with a 30 minute delay from real time data from the Indonesia Stock Exchange. The result obtained is to open horizons of thought that stock trading is not difficult, it can be done by anyone. In the process, in virtual account, many students managed to get a positive return income.
Optimasi Neural Network Dengan Menggunakan Algoritma Genetika Untuk Prediksi Jumlah Kunjungan Wisatawan Fatimatuzzahra Fatimatuzzahra; Rifqi Hammad; Ahmad Zuli Amrullah; Pahrul Irfan
JTIM : Jurnal Teknologi Informasi dan Multimedia Vol 3 No 4 (2022): February
Publisher : Puslitbang Sekawan Institute Nusa Tenggara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v3i4.190

Abstract

West Nusa Tenggara is one of the tourist attractions in Indonesia which has a certain attraction for tourists. With the increase in tourism in NTB, it is necessary to make adequate efforts to maintain tourist objects and attractions. In an effort to maintain a tourist attraction, the NTB provincial tourism office needs to analyze and predict the arrival of local and international tourists. The current analysis and prediction process is still being carried out by collecting data from each tourist attraction entrance. The processed data produces predictions of tourist arrivals, both local and international, where the data processing process takes a long time and requires high human resources. To overcome these problems, it is done by applying computational predictions. Computational predictions can minimize the prediction time and human resources required. The method used is a neural network algorithm with optimized parameters using a genetic algorithm. The optimized parameters are the hidden layer, the number of neurons in the input layer, momentum and others. The data used is time series data from 1997 to 2018. From the neural network experiment, the parameters of the number of neurons in the input layer xt-7 are determined, the number of neurons in the hidden layer 10, the training cycle value is 400, the learning rate value is 0.3 and the momentum value is 0.2. From the experiment, the RMSE value of 0.050 was obtained. While the RMSE value for the neural network algorithm parameters optimized using the genetic algorithm is 0.044. Because of this, it can be stated genetic algorithm with neural network can be used to determine the hidden layer and the number of hidden nodes, the right features, momentum, initialize, and optimize the weight of the neural network. So that the application of the genetic algorithm to optimize the parameter values of the neural network algorithm is better than the application of the neural network algorithm without optimization.
Analisis Portofolio Investasi dengan Metode Multi Objektif Gilang Primajati; Ahmad Zuli Amrullah; Ahmad ahmad
Jurnal Varian Vol 3 No 1 (2019)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v3i1.476

Abstract

In the formation of an efficient portfolio, many methods can be used. Of course with its own assumptions and advantages. In the process, reasonable investor assumptions tend to be risk averse. Investors who are risk averse are investors who, when faced with two investments with the same expected return, will choose an investment with a lower risk level. If an investor has several efficient portfolio choices, then the most optimal portfolio will be chosen. Optimal portfolio with mean-variance efficient portfolio criteria, investors only invest in risky assets. Investors do not include risk free assets in their portfolios. Mean-variance efficient portfolio is defined as a portfolio that has a minimum variance among all possible portfolio that can be formed, at the mean level of the same expected return. The mean variant method of the two constraints can be used as a basis in determining the optimal portfolio weight by minimizing the risk of portfolio return with two constraints. In this article the problem referred to is symbolized by lamda and beta. With this two-constraint method, the results obtained are more detailed so that they can describe the results of a sharper analysis for an investor.
Speech Recognition Untuk Aplikasi Kamus Bahasa Indonesia-Sumbawa Berbasis Android Muhammad Muhammad; Syahroni Hidayat; Ahmad Zuli Amrullah
Jurnal Bumigora Information Technology (BITe) Vol 1 No 2 (2019)
Publisher : Prodi Ilmu Komputer Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (947.95 KB) | DOI: 10.30812/bite.v1i2.606

Abstract

ABSTRAK Sumbawa sebagai salah satu daerah yang dianugrahi potensi wisata yang beragam menjadikan daya tarik masyarakat luar Sumbawa (wisatawan) untuk berkunjung, bekerja, maupun untuk belajar. Namun terkadang bahasa menjadi salah satu kendala yang dihadapi mayarakat luar Sumbawa jika ingin berinteraksi dengan masyarakat asli Sumbawa. Sehingga dibutuhkan sebuah instrument yang bisa digunakan sehingga perbedaan bahasa tidak menjadi kendala dalam berinteraksi yaitu kamus. Oleh karena itu, kamus yang disajikan haruslah sesuai dengan teknologi yang banyak diminati oleh masyarakat Indonesia pada umumnya yaitu smartphone Android dikarenakan fitur-fitur yang tersedia dalam smartphone tersebut. Salah satu fiturnya adalah speech recognition.Perancangan sistem ini dilakukan dengan metodologi waterfall yang terdiri dari proses analisis, desain, pengkodean, pengujian, dan terakhir pemeliharaan. Tools yang digunakan adalah Android Studio dan DB Browser for SQLite (DB4S). Metode pengujian menggunakan Black Box untuk uji fungsionalitas aplikasi dan Word Correct Rate (WCR) untuk menguji akurasi sistem dengan menggunakan 30 kata yang berbeda dan setiap kata diulang sebanyak 10 kali.Hasil yang sudah dicapai dalam penelitian ini adalah terciptanya aplikasi Kamus Bahasa Indonesia- Sumbawa Berbasis Android dengan memanfaatkan teknologi speech recognition.Kesimpulan dari penelitian ini adalah Uji fungsionalitas menunjukkan fitur-fitur aplikasi dapat bekerja dengan baik ketika offline maupun online. Sedangkan untuk uji coba akurasi sistem didapatkan hasil WCR secara berturut-turut sebesar 92.67% ketika offline dan 95.33% ketika online. ABSTRACT Sumbawa as one of the areas that is blessed with diverse tourism potential makes the appeal of people outside Sumbawa (tourists) to visit, work, or to study. But sometimes language becomes one of the obstacles faced by people outside Sumbawa if they want to interact with the native people of Sumbawa. So we need an instrument that can be used so that differences in language do not become obstacles in interacting with the dictionary. Therefore, the dictionary presented must be in accordance with the technology that is in great demand by the Indonesian people in general, namely Android smartphones because of the features available in these smartphones. One of the features is speech recognition. The design of this system is done by the waterfall methodology which consists of the process of analysis, design, coding, testing, and finally maintenance. The tools used are Android Studio and DB Browser for SQLite (DB4S). The testing method uses Black Box to test application functionality and Word Correct Rate (WCR) to test the accuracy of the system using 30 different words and each word is repeated 10 times. The results achieved in this study are the creation of an Indonesian-Sumbawa-based Dictionary application Android by utilizing speech recognition technology. The conclusion of this research is the functionality test shows that the application features can work well when offline or online. Whereas for testing the accuracy of the system the WCR results obtained were 92.67% when offline and 95.33% when online.
Klasifikasi Data Ulasan Positif dan Negatif Dengan Menggunakan Algoritma Naive Bayes Muh. Adrian Juniarta Hidayat; Gilang Primajati; Ahmad Zuli Amrullah
Jurnal Bumigora Information Technology (BITe) Vol 2 No 1 (2020)
Publisher : Prodi Ilmu Komputer Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (326.67 KB) | DOI: 10.30812/bite.v2i1.809

Abstract

Bagi para pelaku penyedia jasa, kualitas pelayanan merupakan suatu hal yang sangat penting karena dapat berdampak pada keberlangsungan bisnis mereka. Salah satu cara untuk menilai kualitas suatu layanan ialah dengan melihat ulasan dari para pelanggan yang pernah menggunakan layanan tersebut. Ulasan yang berbentuk teks dapat menjadi data yang berguna apabila diolah dengan teknik tertentu untuk melihat kualitas suatu layanan dengan mengelompokkan ulasan positif dan negatif dari suatu layanan. Pada tulisan ini mengusulkan untuk melihat kualitas layanan suatu hotel dengan mengolah data ulasan yang berbentuk teks dengan membandingkan rasio ulasan positif dan negatif dari pelanggan dengan menggunakan algoritma Naive Bayes. Hasil dari percobaan terlihat bahwa pengelompokan ulasan positif dan negatif dapat dilakukan dengan baik dengan memberikan bobot rangking tertentu pada setiap kata yang terdapat didalam ulasan, sehingga dapat diketahui bahwa kualitas layanan cenderung mendapat umpan balik positif atau negatif.