Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Chemistry

Synthesis of Mn(II)-Loaded TixSi1-xO4 Composite Acting as a Visible-Light Driven Photocatalyst Misriyani Misriyani; Eko Sri Kunarti; Masahide Yasuda
Indonesian Journal of Chemistry Vol 15, No 1 (2015)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (368.144 KB) | DOI: 10.22146/ijc.21222

Abstract

The synthesis and characterization of Mn-loaded TixSi1-xO4 (x= 0.4-0.8) composites and a preliminary study of an activity testing their ability to work as photocatalysts for the degradation of methylene blue (MB) have been studied. Synthesis was conducted by the sol-gel method at room temperature using tetraethyl orthosilicate, titanium tetraisopropoxide, and manganese(II) chloride as precursors followed by thermal treatment at 500 °C. The characterizations were performed by X-ray diffraction, FT-IR spectrometry, UV-Vis diffuse reflectance spectrometry and a surface area analyzer. The photocatalytic activity test of composites for degradation of MB was carried out in a closed reactor equipped with UV and visible lights. In this test, the effects of ratio of Ti/Si composites, Mn2+ ion concentration, pH, and time of irradiation on the effectiveness of photodegradation of MB were studied. The results indicated that Mn-Ti0.6Si0.4O4 composite could be synthesized through the sol-gel method followed by thermal treatment with a molar ratio of Ti/Si=60/40 and the optimum concentration of manganese was 2.5 wt%. The Mn-Ti0.6Si0.4O4 composite significantly increased the photodegradation of MB at pH 10, with a percent degradation of 84.41% for 30 min under irradiation of visible light. The percent degradation of Ti0.6Si0.4O4 was only 18.23% under irradiation of visible light.
Effect of Anodizing Time and Annealing Temperature on Photoelectrochemical Properties of Anodized TiO2 Nanotube for Corrosion Prevention Application Misriyani Misriyani; Abdul Wahid Wahab; Paulina Taba; Jarnuzi Gunlazuardi
Indonesian Journal of Chemistry Vol 17, No 2 (2017)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (453.341 KB) | DOI: 10.22146/ijc.24183

Abstract

A study on the influence of anodizing time, annealing temperature and photoelectrochemical properties of TiO2 nanotube (TiO2 NT) has been investigated. The crystallinity was investigated using X-Ray Diffraction and the anti-corrosion performance of stainless steel 304 (SS 304) coupled with TiO2 NT was evaluated using electrochemical techniques under ultraviolet exposure. The optimum anodizing condition occurs at a voltage of 20 V for 3 h. After anodizing, the TiO2 NT amorf was calcined at 500 °C to obtain anatase crystalline phase. For the photoelectrochemical property, the effects of pH and NaCl concentration on corrosion prevention have been examined. The result showed that the corrosion rate of stainless steel 304 coupled with TiO2 NT can be reduced up to 1.7 times compared to the uncoupled stainless steel 304 (3.05×10-6 to 1.78×10-6 mpy) under ultraviolet exposure by shifted the photopotential to the more negative value (-0.302 V to -0.354 V) at a pH of 8 and 3% NaCl concentration (-0.264 V to -0.291 V). In conclusion, the TiO2 NT films, which was prepared by anodization and followed by annealing can prevent the corrosion of stainless steel 304.