Claim Missing Document
Check
Articles

Found 13 Documents
Search

Analisis Sistem PIV Pada Terowongan Angin Rangkaian Terbuka Sipayung, Yusuf Febrio; Ismail, Ismail; Pane, Erlanda Augupta
Seminar Nasional Teknik Mesin 2019: Prosiding Seminar Nasional Teknik Mesin 2019
Publisher : Politeknik Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk menghasilkan sistem particle image velocimetry (PIV) yang integrasi dan berfungsi dengan baik. Penelitian ini diharapkan bermanfaat untuk pengujian dan analisis pada terowongan angin di Universitas Pancasila. Metode yang digunakan dalam penelitian ini menggunakan pendekatan studi literatur dan penggunaan software OpenPIV. Kajian literatur untuk mendapatkan referensi dalam menganalisis Sistem PIV menggunakan berbagai sumber buku, jurnal, dan penelitian sebelumnya. Sistem PIV dipengaruhi ukuran diameter akrilik, posisi laser dan tracer particle. Sistem PIV pada penelitian ini berfungsi dengan baik dan terintegrasi.
Analisis Kinerja Mikro Turbin Gas Bahan Bakar LPG (Liquefied Petroleum Gas) Qardhawi, Youssuf; Ghaffar, Nurshofi; Prasetyo, Eko; Hermawan, Rudi; Pane, Erlanda Augupta
Rekayasa Vol 14, No 3: Desember 2021
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/rekayasa.v14i3.12230

Abstract

 The Micro Gas Turbine is a device that functions to convert chemical energy from fuel from the combustion process into mechanical energy, which is then converted back to a generator to become electricity. This study aims to obtain the results of performance testing as well as the results of the comparison analysis of the Gas Turbine Micro from the design and testing of the assembly tool. The fuel used in this Gas Micro Turbine is LPG (Liquefied Petroleum Gas). The advantages of LPG are it is easy to obtain, has a high octane value so that the power generated is greater, has a high vapor pressure so there is no need to use a pump to drain it. The result of this research is that the addition of a fire source can increase the turbine inlet temperature although it is not significant because the fire does not burn continuously due to the compressor rotation being too forceful. In the first and second actual tool tests, the temperatures were 317.48K and 323.75 K, different from the results of the analysis on the ANSYS software where the temperature was 766 K and 793 K.
Analisis Pemanfaatan Energi Panas Menjadi Energi Listrik Pada Proses Pengereman Rem Cakram Pada Kendaraan Roda Empat Calvin Hans Adam Calvin; Erlanda Augupta Pane
Teknobiz : Jurnal Ilmiah Program Studi Magister Teknik Mesin Vol 10 No 3 (2020): Teknobiz
Publisher : Magister Teknik Mesin Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/teknobiz.v10i3.1758

Abstract

This research was conducted to determine the electrical energy generated from friction heat in the braking process of disc brakes on four-wheeled vehicles with a calculation analysis of heat flow rates at speeds of 10 km/h and 15 km/h at 519 rpm, 748 rpm, and 1.234 rpm. The testing time is 20 minutes to get a measure of the heat generated from braking friction. The heat produced is converted into electrical energy using a thermoelectric device. Based on the calculation of the heat flow rate caused by friction on braking, a heat flow rate of 141.61 Watt is obtained and the voltage result is 317.2 mV. These results indicate the longer the braking is done, the heat generated from the friction force, the rate of heat flow flowing from the disk to the thermoelectric device, and the voltage result will be greater.
Pengembangan Tungku Gasifikasi Arang Biomassa Tipe Natural Draft Gasification Berdasarkan Analisis Computational Fluid Dynamics (CFD) Erlanda Augupta Pane; Leopold O. Nelwan; Dyah Wulandani
Jurnal Keteknikan Pertanian Vol. 2 No. 2 (2014): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19028/jtep.02.2.%p

Abstract

AbstractA biomass stove based on natural draft gasification (NDG) has been developed in a previous study (Nelwa, et al. 2013) by using simulation based on heat transfer and equilibrium modeling. In this study, a CFD simulation was performed in order to analyze the effect of chimney height, and inlet hole diameter of the stove to the performance of the stove. The results of simulation showed that power produced by stove was between 1863.9 J/s until 2585.7 J/s, and its gasification efficiency was 67.11%. The results of simulation also showed that charcoal gasification produces combustible gases (CO, CH4, and H2) at the bottom and the center of stove, and then they were oxidized by secondary air at the top of stove. This oxidation reaction produces sufficient heat energy which can be used for cooking process.Keywords: stove, power, combustible gas, gasification efficiencyAbstrakSebuah Disain tungku natural draft gasification (NDG) telah diciptakan sebelumnya (Nelwa, et al. 2013) dengan menggunakan pemodelan dan simulasi berbasis pindah panas, dan equilibrium. Penelitian ini menggunakan simulasi computational fluid dynamics (CFD) untuk menganalisis performa tungku pada bagian geometri cerobong gas bakar, dan lubang udara sekunder. Hasil simulasi dari beberapa skenario tungku yang dilakukan dapat disimpulkan bahwa dari skenario disain tungku didapatkan daya tungku antara 1863.9 J/detik sampai dengan 2585.7 J/detik, dan memiliki efisiensi gasifikasi sebesar 67.11%. Proses gasifikasi arang kayu menghasilkan gas mampu bakar CO, CH4, dan H2, dimana gas mampu bakar tersebut mengalami reaksi pembakaran dengan aliran udara sekunder yang masuk di bagian tengah saluran gas mampu bakar. Reaksi pembakaran ini, menghasilkan energi panas yang memadai untuk proses memasak.Kata Kunci: tungku, daya, gas bakar, efisiensi gasifikasiDiterima: 02 Mei 2014; Disetujui: 15 Agustus 2014
Pengaruh Jarak dan Posisi Nozzle Terhadap Daya Turbin Pelton Yani Kurniawan; Erlanda Augupta Pane; Ismail Ismail
Jurnal Keteknikan Pertanian Vol. 5 No. 3 (2017): JURNAL KETEKNIKAN PERTANIAN
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1508.332 KB) | DOI: 10.19028/jtep.05.3.275-282

Abstract

AbstractPelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position of nozzle with three variations, first position is the right side horizontal of bottom shaft turbine, second position is vertical to down direction, and third position is the left side horizontal of upper shaft turbine. The parameter of nozzle distance used five variations was 24 cm, 23 cm, 22 cm, 21 cm, dan 20 cm, which measured from the end of position nozzle to blade turbine. The result shows that the right side horizontal of bottom shaft turbine with distance of nozzle 23 cm had the maximum performance to produce a power 125 Watt with the rotation of shaft turbine 263 rpm. Abstrak Turbin Pelton adalah sebuah turbin yang menggunakan nozzle sebagai pengatur arah aliran air ke sudu turbin yang berputar. Putaran sudu turbin dipengaruhi oleh beberapa parameter antara lain jarak nozzle, posisi nozzle, diameter nozzle, jumlah nozzle, dan bentuk geometri sudu turbin. Studi eksperimen yang dilakukan pada turbin pelton dimaksudkan untuk menganalisis pengaruh posisi dan jarak nozzle terhadap pergerakkan sudu yang menentukan performa turbin pelton guna mendapatkan daya listrik yang optimum. Metode penelitian yang dilakukan menggunakan parameter pengujian yaitu posisi nozzle dengan tiga variasi yaitu pada posisi pertama adalah horizontal sebelah kanan sisi bawah poros turbin, posisi kedua adalah vertikal ke bawah, dan posisi ketiga pada horizontal sebelah kiri sisi atas poros turbin. Parameter jarak nozzle menggunakan lima variasi yaitu 24 cm, 23 cm, 22 cm, 21 cm, dan 20 cm, yang diukur dari posisi ujung nozzle terhadap sudu turbin pelton. Hasil penelitian menunjukkan bahwa posisi horizontal sebelah kanan sisi bawah dari poros turbin dengan jarak nozzle sebesar 23 cm merupakan hasil yang maksimum untuk menghasilkan putaran poros turbin sebesar 263 rpm dan mampu menghasilkan daya sebesar 125 Watt.
Simulasi Tungku Gasifikasi Tipe Natural Draft Berbasis Model Efek Cerobong dan Keseimbangan Termokimia Leopold Oscar Nelwan; Dyah Wulandani; Edy Hartulistiyoso; Sri Endah Agustina; Dziyad Dzulfansyah; Erlanda Augupta Pane
Jurnal Keteknikan Pertanian Vol. 6 No. 1 (2018): JURNAL KETEKNIKAN PERTANIAN
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1437.842 KB) | DOI: 10.19028/jtep.06.1.61-68

Abstract

AbstractThis study was aimed to simulate a novel configuration of gasification stove with the natural draft principles (natural draft gasification or called as NDG stove) based on chimney effect and thermochemical equilibrium modeling. The thermochemical equilbrium model used general stoichiometric gasification,methanation and water-gas shift equations and their equilibrium constant equations as well as the general energy balance equation. Those equations were coupled with the chimney effect equation and then solved to obtain the reaction coefficients, equilibrium constants, reaction temperature as well as the mass flow rate of air. Simulation was performed by using VBA programming codes in Excel. Subsequently, a stove was built in order to obtain the charcoal consumption rate data which is required to validate the model. The test results showed that the combustion rate was constant i.e. 8.8 g/min and the quality of the flame of the stove was visually good. The calculation result showed that the model could succesfully predict the product gases including CO, CH4, CO2, O2, N2 and other gases. The simulation showed that by using lower stoveheight (0.5 and 0.4 m) the combustible gases (CO, H2 and CH4) compositions were increased in such a way that with same combustion rate the potential heat of gas increased from 2.33 kW at stove height of 0.6 m to 2.63 kW at 0.4 m.AbstrakPenelitian ini bertujuan untuk mensimulasi tungku gasifikasi dengan konfigurasi baru yang menggunakan prinsip natural draft (tungku natural draft gasification atau disebut sebagai tungku NDG) didasarkan padapemodelan efek cerobong dan keseimbangan termokimia. Model keseimbangan termokimia menerapkan persamaan stoikiometri untuk gasifikasi, methanation dan water-gas shift, persamaan-persamaan konstanta keseimbangannya serta persamaan neraca energi umum. Persamaan-persamaan tersebut digabungkan dengan persamaan efek cerbong dan dipecahkan untuk memperoleh koefisien reaksi, konstanta keseimbangan, suhu reaksi dan laju aliran massa udara. Selanjutnya tungku tersebut dikonstruksi dan diuji untuk memperoleh data laju konsumsi arang yang dibutuhkan untuk validasi model. Hasil pengujiankinerja menunjukkan bahwa penggunaan tungku untuk arang kayu memiliki laju pembakaran yang konstan 8.8 g/menit dan kualitas nyala api tungku ini cukup baik secara visual. Hasil perhitungan menunjukkanbahwa model yang diterapkan telah dapat memprediksi konsentrasi gas-gas produk yang mencakup CO, CH4, CO2, O2 serta gas N2 dan gas-gas lainnya. Hasil simulasi menunjukkan bahwa tinggi tungku yang lebih rendah (0.5 dan 0.4 m) memberikan konsentrasi gas-gas mampu bakar yang lebih tinggi sedemikian hingga dengan laju konsumsi arang yang sama daya gas potensialnya meningkat dari 2.33 kW pada tinggi0.6 m menjadi 2.63 kW pada tinggi 0.4 m.
ANALISA KINERJA PENGEMBANGAN DESAIN POSISI RUANG BAKAR MIKROTURBIN GAS Eko Prasetyo; Rudi Hermawan; Erlanda Augupta Pane
Jurnal Teknologi Vol 14, No 1 (2022): Jurnal Teknologi
Publisher : Fakultas Teknik Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24853/jurtek.14.1.39-46

Abstract

This research was conducted to develop a gas microturbine design by optimizing the position of the combustion chamber, which changes the position of the combustion chamber from vertical to horizontal and in a single axis with compressor and turbine components. The research method used is to calculate the change in the position of the combustion chamber from a vertical to a horizontal position, and thermodynamic analysis using the Brayton cycle in both ideal and actual conditions. The results of this research can be explained that the new design produces an outlet temperature of the combustion chamber or a gas turbine inlet temperature of 1242 K and a gas turbine outlet temperature of 870 K. This condition results in a thermal efficiency of 27.35%. Changing the position of the combustion chamber to a horizontal position in the development of gas microturbine designs can be concluded that can improve the performance of gas microturbine designs.
PERANCANGAN INSTALLASI SISTEM PENGENDALIAN EMISI DEBU PADA AREA PENGEMASAN BUBUK ZAT ADIKTIF Erlanda Augupta Pane; Galih Taqwatomo; Ismail Ismail
Jurnal Teknologi Vol 11, No 2 (2019): Jurnal Teknologi
Publisher : Fakultas Teknik Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24853/jurtek.11.2.149-162

Abstract

Penelitian ini dilakukan untuk merancang ulang instalasi sistem pengendalian emisi debu yang terdapat pada area pengemasan produk bubuk zat adiktif. Hal ini terjadi karena sistem unit pengendali emisi debu tidak dapat beroperasi secara optimal untuk mencegah intensitas paparan emisi di area pengemasan sehingga dapat mengganggu kinerja operator dan kondisi lingkungan. Metode penelitian menggunakan metode Perancis, yang dibagi menjadi pengamatan data untuk mendapatkan data nyata, mendesain ulang desain sistem kontrol emisi debu dan melakukan pengujian untuk mendapatkan data penelitian. Hasil penelitian menunjukkan bahwa perancangan ulang sistem unit kontrol emisi debu difokuskan pada perubahan jenis filter dari cartridge filter menjadi sleeves/bag filter. Tipe ini memiliki spesifikasi kinerja total airflow sebesar 4767 m3/jam dan nilai surface area filter sebesar 37.8 m3, di mana jumlah total filternya adalah 32 buah dengan setiap filter memiliki diameter 125 mm dan panjang 3 m. Bentuk fitting duct dan suction point yang juga dirancang ulang pada sistem instalasi dapat meningkatkan kinerja sistem. Hasilnya dapat meningkatkan daya kipas dari 4,27 kW menjadi 5,5 kW yang disesuaikan dengan spesifikasi pemasangan sistem yang ada untuk mengelola emisi debu di area pengemasan. Kondisi ini mampu menghasilkan penghematan efisiensi motor mekanik hingga 77%.
Analisis Penurunan Tekanan Aliran Udara Pada Pipa Bertekanan Erlanda Augupta Pane; Ismail Ismail; Febrian Dwi Yudhanto; Budhi Suyitno
FLYWHEEL : Jurnal Teknik Mesin Untirta Volume V Nomor 2, Oktober 2019
Publisher : Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36055/fwl.v1i1.3111

Abstract

Penurunan tekanan pada sistem pemipaan bertekanan merupakan hal yang sangat berpengaruh terhadap pengaturan unit operasional kompresor dan air dryer pada area power house dalam mensuplai aliran udara ke dalam area welding dan area dieshop dikarenakan kerugian yang ditimbulkan, akibat tidak termanfaatkannya tekanan aliran udara secara maksimal. Penelitian ini bertujuan untuk menganalisis faktor yang menjadi penyebab kerugian penurunan tekanan pada sistem pipa bertekanan di unit area welding, power house, dan dieshop dengan menggunakan metode analisis besaran nilai kerugian yang terbagi menjadi dua sub bagian yaitu kerugian mayor (Mayor Pressure Loses) dan kerugian minor (Minor Pressure Losses) berdasarkan metode French dengan mengacu pada studi lapangan komponen pipa bertekan. Hasil dari penelitian dapat diketahui bahwa penurunan tekanan mayor pipa bertekan (hgs) sebesar 525.21 Pa atau memiliki persentase sebesar 51.61 %, sedangkan penurunan tekanan minor pipa (hL) sebesar 471.9 Pa atau persentase sebesar 46.37%. Persentase penurunan tekanan udara total maksimum berdasarkan lokasi ketiga area yaitu area welding, powerhouse, dan dieshop secara berurutan dapat diketahui yaitu 0.025%, 0.055%, dan 0.061%. Kondisi penurunan tekanan pipa tertinggi terdapat di area dieshop dengan nilai sebesar 719558.9 Pa, dimana ukuran tersebut kurang dari ukuran suplai laju aliran udara dari pipa bertekanan yang berasal dari kompresor dengan tekanan standar sebesar 720000 Pa, hal ini disebabkan sistem instalasi pipa bertekanan yang tidak mengikuti kondisi standar dan ukuran dimensi pipa yang kurang tepat.
Pengaruh Proses Penuaan untuk Meningkatkan Kekerasan Material Komposit Matriks Aluminium Erlanda Augupta Pane; Hendri Sukma; Dwi Rahmalina; Aditya Gantina
FLYWHEEL : Jurnal Teknik Mesin Untirta Volume IV Nomor 1, April 2018
Publisher : Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1375.985 KB) | DOI: 10.36055/fwl.v1i1.3098

Abstract

Komposit matriks aluminium berpenguat partikel keramik telah banyak dikembangkan untuk berbagai aplikasi komponen, karena ringan dan mempunyai sifat mekanis yang baik. Peningkatan sifat mekanis komposit, khususnya kekerasan, dapat dilakukan dengan proses perlakuan panas dengan pengaturan parameter proses penuaan yang optimal. Penelitian ini bertujuan untuk memperoleh parameter proses penuaan yang tepat sehingga dapat menghasilkan peningkatan kekerasan pada material komposit matriks aluminium berpenguat alumina (Al2O3). Komposit dibuat dalam bentuk plat melalui proses pengecoran squeeze casting, dengan material matriks Al-3Si-9Zn-6Mg berpenguat partikel alumina (Al2O3) dengan fraksi volume alumina 10 %. Proses perlakuan panas diawali dengan proses laku pelarutan dan dilanjutkan dengan proses penuaan (aging) dengan memvariasikan temperatur dan waktu. Proses penuaan dilakukan pada temperatur 140⁰C, 180⁰C dan 200⁰C, selama 2 jam, 4 jam dan 6 jam.  Hasil penelitian menunjukkan bahwa kekerasan komposit matriks aluminium berpenguat alumina sangat tergantung pada temperatur dan waktu aging.Temperatur aging 180⁰C dan waktu aging 6 jam menghasilkan nilai kekerasan yang paling tinggi yaitu sebesar 74 HRB.