Anang Tjahjono, Anang
Program Studi Teknik Elektro Industri, Departemen Teknik Elektro, Politeknik Elektronika Negeri Surabaya

Published : 16 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Jurnal Rekayasa elektrika

Pendeteksian Harmonisa Arus Berbasis Feed Forward Neural Network Secara Real Time Endro Wahjono; Dimas Okky Anggriawan; Achmad Luki Satriawan; Aji Akbar Firdaus; Eka Prasetyono; Indhana Sudiharto; Anang Tjahjono; Anang Budikarso
Jurnal Rekayasa Elektrika Vol 16, No 1 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (869.076 KB) | DOI: 10.17529/jre.v16i1.15093

Abstract

The development of power electronics converters has been widespread in the industrial, commercial, and home applications. The device is considered to produce harmonics in non-linear loads. Harmonics cause a decrease in power quality in the electric power system. To prevent a decrease in power quality caused by harmonics in the power system, the detection of harmonics has an important role. Therefore, this paper proposed feed forward neural network (FFNN) for harmonic detection. The design of harmonic detection device is designed with a feed forward neural network method that it has two stages of information processing, namely the training stage and the testing stage. FFNN has input harmonics and THDi as output. To detect harmonics, frst training is conducted to recognize waveform patterns and calculate the fast fourier transform (FFT) process offline. Prototype using the AMC1100DUB current sensor, microcontroller and display. To validate the proposed algorithm, compared by standard measurement tool and FFT. The results show the proposed algorithm has good performance with the average percentage error compared by standard measurement tool and FFT of 5.33 %.
Maximum Power Point Tracking Menggunakan Algoritma Artificial Neural Network Berbasis Arus Hubung Singkat Panel Surya Muhammad Nizar Habibi; Mas Sulung Wisnu Jati; Novie Ayub Windarko; Anang Tjahjono
Jurnal Rekayasa Elektrika Vol 16, No 2 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1434.609 KB) | DOI: 10.17529/jre.v16i2.14860

Abstract

The conversion of solar energy into electrical can be utilized by using the solar panel, but the energy conversion ratio is still low. Maximum Power Point Tracking (MPPT) is a method used to increase energy production in the process of converting electrical to the solar panel. Artificial Neural Network (ANN) is one of the soft-computing methods that can be applied as MPPT with the advantage of having a learning process, very stable, fast, doesn’t require complicated mathematical modeling, and has good performance. ANN is proposed with input from the short circuit current of the solar panel and is used as a reference for the ANN to reach the maximum power. The process of detecting a short circuit current is indicated by a momentary decrease of the power by the solar panel. The results show the proposed algorithm can reach the maximum power operating point of the solar panel despite the change of radiation. When at maximum power operating point, ANN can hold the value, so the resulting value doesn’t change and doesn’t generate ripple. At radiation of 1000 W/m2 and using 100 WP, ANN can produce a maximum power of 99.97 Watts with a time of 0.063 seconds. 
Maximum Power Point Tracking Menggunakan Algoritma Artificial Neural Network Berbasis Arus Hubung Singkat Panel Surya Muhammad Nizar Habibi; Mas Sulung Wisnu Jati; Novie Ayub Windarko; Anang Tjahjono
Jurnal Rekayasa Elektrika Vol 16, No 2 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v16i2.14860

Abstract

The conversion of solar energy into electrical can be utilized by using the solar panel, but the energy conversion ratio is still low. Maximum Power Point Tracking (MPPT) is a method used to increase energy production in the process of converting electrical to the solar panel. Artificial Neural Network (ANN) is one of the soft-computing methods that can be applied as MPPT with the advantage of having a learning process, very stable, fast, doesn’t require complicated mathematical modeling, and has good performance. ANN is proposed with input from the short circuit current of the solar panel and is used as a reference for the ANN to reach the maximum power. The process of detecting a short circuit current is indicated by a momentary decrease of the power by the solar panel. The results show the proposed algorithm can reach the maximum power operating point of the solar panel despite the change of radiation. When at maximum power operating point, ANN can hold the value, so the resulting value doesn’t change and doesn’t generate ripple. At radiation of 1000 W/m2 and using 100 WP, ANN can produce a maximum power of 99.97 Watts with a time of 0.063 seconds. 
Pendeteksian Harmonisa Arus Berbasis Feed Forward Neural Network Secara Real Time Endro Wahjono; Dimas Okky Anggriawan; Achmad Luki Satriawan; Aji Akbar Firdaus; Eka Prasetyono; Indhana Sudiharto; Anang Tjahjono; Anang Budikarso
Jurnal Rekayasa Elektrika Vol 16, No 1 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v16i1.15093

Abstract

The development of power electronics converters has been widespread in the industrial, commercial, and home applications. The device is considered to produce harmonics in non-linear loads. Harmonics cause a decrease in power quality in the electric power system. To prevent a decrease in power quality caused by harmonics in the power system, the detection of harmonics has an important role. Therefore, this paper proposed feed forward neural network (FFNN) for harmonic detection. The design of harmonic detection device is designed with a feed forward neural network method that it has two stages of information processing, namely the training stage and the testing stage. FFNN has input harmonics and THDi as output. To detect harmonics, frst training is conducted to recognize waveform patterns and calculate the fast fourier transform (FFT) process offline. Prototype using the AMC1100DUB current sensor, microcontroller and display. To validate the proposed algorithm, compared by standard measurement tool and FFT. The results show the proposed algorithm has good performance with the average percentage error compared by standard measurement tool and FFT of 5.33 %.