cover
Contact Name
Muji Setiyo
Contact Email
muji@unimma.ac.id
Phone
+62293326945
Journal Mail Official
mesi@unimma.ac.id
Editorial Address
Universitas Muhammadiyah Magelang, Jl. Bambang Soegeng KM. 4 Mertoyudan Magelang, Telp/Faks : (0293) 326945
Location
Kab. magelang,
Jawa tengah
INDONESIA
Mechanical Engineering for Society and Industry
ISSN : -     EISSN : 27985245     DOI : https://doi.org/10.31603/mesi
Aims Mechanical engineering is a branch of engineering science that combines the principles of physics and engineering mathematics with materials science to design, analyze, manufacture, and maintain mechanical systems (mechanics, energy, materials, manufacturing) in solving complex engineering problems. Therefore, this journal accommodates all research documentation and reports on technology applications in society and industry from various technology readiness levels (TRL): basic, applied, and report of technology application. Basic - theoretical concepts of natural science, application of engineering mathematics, special and unique materials science, theoretical principles of engineering design, production, energy conversion, or industrial mechatronics/automation that support mechanical engineering analysis with a sustainable engineering perspective. Applied - thermal-mechanical design (energy, applied mechanics, material selection, material strength analysis) to support sustainable design and engineering capabilities. Report of technology application - the impact of technology on economic and social, ecological principles, sustainability principles (sustainability), communication techniques, and factual knowledge that contribute to solving complex and sustainable engineering problems. Scope Aerodynamics and Fluid Mechanics This scope includes boundary layer control, computational fluid dynamics for engineering design and analysis; turbo engines; aerodynamics in vehicles, trains, planes, ships, and micro flying objects; flow and induction systems; numerical analysis of heat exchangers; design of thermal systems; Wind tunnel experiments; Flow visualization; and all the unique topics related to aerodynamics, mechanics and fluid dynamics, and thermal systems. Combustion and Energy Systems This scope includes the combustion of alternative fuels; low-temperature combustion; combustion of solid particles for hydrogen production; combustion efficiency; thermal energy storage system; porous media; optimization of heat transfer devices; shock wave fundamental propagation mechanism; detonation and explosion; hypersonic aerodynamic computational modeling; high-speed propulsion; thermo-acoustic; low-noise combustion; and all the unique topics related to combustion and energy systems. Design and Manufacturing This scope includes computational synthesis; optimal design methodology; biomimetic design; high-speed product processing; laser-assisted machining; metal plating, micro-machining; studies on the effects of wear and tear; fretting; abrasion; thermoelastic. This scope also includes productivity and cycle time improvements for manufacturing activities; production planning; concurrent engineering; design with remote partners, change management; and involvement of the Industry 4.0 main area in planning, production, and maintenance activities. Dynamics and Control The dynamics and control group includes aerospace systems; autonomous vehicles; biomechanics dynamics; plate and shell dynamics; style control; mechatronics; multibody system; nonlinear dynamics; robotics; space system; mechanical vibration; and all the unique topics related to engine dynamics and control. Materials and Structures The scope of this field includes composite fabrication processes; high-performance composites for automotive, construction, sports equipment, and hospital equipment; natural materials; special materials for energy sensing and harvesting; nanocomposites and micromechanics; the process of modeling and developing nanocomposite polymers; metal alloys; energy efficiency in welding and joining materials; vibration-resistant structure; lightweight-strong design; and all the unique topics related to materials and construction. Vibrations, Acoustics, and Fluid-Structure Interaction This group includes nonlinear vibrations; nonlinear dynamics of lean structures; fluid-structure interactions; nonlinear rotor dynamics; bladed disc; flow-induced vibration; thermoacoustic; biomechanics applications; and all the unique topics related to vibrations, acoustics, and fluid-structure interaction.
Articles 49 Documents
Design and implementation of automatic fish feeder (AFF) using microcontroller powered by solar cell: A Contribution to the fish farmers Susilawati Susilawati; Aditya Nugraha; Azhis Sholeh Buchori; Slamet Rahayu; Ferdi Fathurohman; Oyok Yudiyanto
Mechanical Engineering for Society and Industry Vol 3 No 1 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.8276

Abstract

This study aims to design and test an automatic fish feeder (AFF) controlled by a microcontroller with an electricity supply from a solar cell. To build a reliable and accurate system, input data is collected for design, followed by system development, feasibility analysis, and performance testing. The test results show that AFF works according to the settings of the microcontroller, where the servo motor can open and close the feed channel periodically, three times a day. The feeding schedule is set at 07.00, 12.00, and 16.00. In addition, fundamental indicators including feed conversion ratio (FCR) and feed efficiency (FE) are showing positive results. Through the application of AFF which replaces manual feeding, the FCR is obtained at 1.15 from the initial value of 1.44. Meanwhile, FE increased from 69.4% to 86.8%. Technically, AFF is suitable for use by tilapia and carp farmers.
Characteristics of briquettes from plastic pyrolysis by-products Sunaryo Sunaryo; Sutoyo Sutoyo; Suyitno Suyitno; Zainal Arifin; Thomas Kivevele; Artur I. Petrov
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.9114

Abstract

Pyrolysis has been proven as a method to reduce plastic waste and produce useful products, especially liquid fuels. However, plastic pyrolysis also produces gases and char as by-products which are being investigated for useful products. Therefore, our present study aims to investigate the char characteristics of plastic pyrolysis for further use as briquettes. Seven samples of char by-products from the pyrolysis process of low-density polyethylene (LDPE) plastic at various reaction temperatures and catalyst types were studied. The proximate test is used to determine the properties of char such as moisture content, ash, volatile matter, and fixed carbon while the bomb calorimeter is used to determine the calorific value. Briquettes are formed by mixing 4 grams of char and 0.5-1 gram of binder (1% starch and 90% water). The briquettes were formed into solid cylinders with a diameter of 1.75 cm and formed with a pressure of 10 kg/cm2. Furthermore, the impact resistance index (IRI) was used to test the performance of the briquettes and showed an IRI value between 100 and 200. However, of the seven char samples tested, three of them were impossible to process into briquettes because they melted during the combustion test.
Tensile shear load in resistance spot welding of dissimilar metals: An optimization study using response surface methodology Sukarman Sukarman; Triyono Triyono; Budi Kristiawan; Amir Amir; Nazar Fazrin; Ade Suhara; Renata Lintang Azizah; Fajar Mucharom
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.9606

Abstract

Resistance spot welding (RSW) is being applied extensively in different industries, specifically the automotive sector. Therefore, this study was conducted to optimize the tensile strength load (TSL) in RSW by investigating the application of dissimilar materials as input parameters. The optimization process involved the combination of different galvanized and non-galvanized steel materials. The production of car bodies using galvanized steel with approximately 13.0 microns thick zinc (Zn) coating was found to be a standard practice, but this zinc layer usually presents challenges due to the poor weldability. This study prepared 27 units of TSL samples using a spot-welding machine and a pressure force system (PFS) for the electrode tip. The aim was to determine the optimal TSL through the exploration of specified RSW parameters. The process focused on using the response surface methodology (RSM) to achieve the desired outcome while the Box-Behnken design was applied to determine the input parameters. The optimal TSL obtained was 5265.15 N by setting the squeeze time to 21.0 cycles at a welding current of 24.5 kA, a welding time of 0.5 s, and a holding time of 15.0 cycles. The highest TSL value recorded was 5937.94 N at 21.0 cycles, 27.0 kA, 0.6 s, and 15.0 cycles respectively. These findings were considered significant to the enhancement of productivity across industries, specifically in the RSW process. However, further study was required to investigate additional response variables such as the changes in hardness and microstructure.
Verification of a new prototype design of bogie monorail frame with variation of static loading Budi Haryanto; Makmuri Nuramin; Djoko Wahyu Karmiadji; Mustasyar Perkasa; Anwar Anwar; Budi Prasetiyo; Yudi Irawadi; Ogi Ivano; Yana Heryana; Indra Hardiman; Saeful Andhi; Wahyu Purnawirawan
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.9905

Abstract

The purpose of this study was to analyze and validate the strength of a new design monorail bogie frame. The 33 tons capacity of passenger train is supported by two bogie frames, in which each bogie frame structure should support 16.5 tons train load. A bogie frame prototype of monorail structure made of steel material JIS SS 400 was tested with 16.5 tons of static loading. Static test results showed the maximum strain value was 479 microstrain or equivalent to a stress value of 100.54 MPa. The experimental stress value was still far below the yield stress value of the material of 245 MPa. Based on the results of static testing, the design of the monorail bogie frame structure meets strength criteria and safety requirements.
Utilization of plastic waste to improve properties of road material: A review Safety Husna Pangestika; Kushendarsyah Saptaji; Anak Agung Ngurah Perwira Redi; Asep Bayu Dani Nandiyanto; Surya Danusaputro Liman; Farid Triawan
Mechanical Engineering for Society and Industry Vol 3 No 3 (2023): Special Issue on Technology Update 2023
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10133

Abstract

The failure of asphalt pavement occurs due to heavy traffic loads and weather conditions such as humidity, temperature, and UV radiation. To address or minimize these failures, significant efforts have been made in recent years to improve the properties of asphalt materials, ultimately enhancing field performance, and extending the lifespan of pavements. Asphalt with plastic modification is considered one of the most suitable and popular approaches. Plastic offers several advantages and is generally known to improve stiffness at high temperatures, although some types are more susceptible to phase separation. Therefore, it is necessary to use the right methods, temperatures, and proportions when designing plastic asphalt mixes to produce a homogeneous mixture. Plastic mixing with asphalt blends is done through two methods: the dry mixing method and the wet mixing method. The ideal amount of plastic added to the mix should modify the asphalt blend to make it more resistant to rutting, fatigue cracking, thermal cracking, and moisture resistance. Failure to determine the correct plastic dosage can lead to negative effects on pavement performance. In general, incorporating plastic waste into asphalt mixes has shown improvements in performance metrics such as stiffness, resistance to cracking, and fatigue resistance. The result of the asphalt and plastic mixture is an increase in stability, making the mixture stronger in bearing loads. Adding plastic waste to the mix makes it stiffer, resulting in a higher MR value, thus providing better resistance to permanent deformation compared to conventional mixtures. Additionally, in wheel tracking tests, the asphalt-plastic mixture reduced rutting depth by 29% compared to conventional mixtures. Similarly, in fatigue testing, the asphalt-plastic mixture yielded a higher load cycle value, making it more resistant to repeated loads. This article explains the details of using plastic in asphalt mixes to enhance asphalt performance and road durability. Various types of plastics, including PET, HDPE, LDPE, PVC, LDPE, PP, and PS, have been successfully used to modify asphalt. However, each type has its advantages and disadvantages, as discussed comprehensively in this journal. Essentially, the utilization of plastic waste in asphalt blends will help reduce the need for landfill disposal, decrease dependence on non-renewable resources, and expand options for asphalt pavement construction.
The Square cup deep drawing: Technology transfer from experts to increase production in small and medium enterprise (SME) groups Karyadi Karyadi; Sukarman Sukarman; Dodi Mulyadi; Muhamad Taufik Ulhakim; Nazar Fazrin; Tomas Irfani; Nana Rahdiana; Afif Hakim; Alizar Nurdin; Fajar Mucharrom
Mechanical Engineering for Society and Industry Vol 4 No 1 (2024): Ongoing Issue
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10298

Abstract

The deep drawing is a complex steel forming method involving blank dimensions, dimension/height ratio (D/H ratio), and clearance between die and punch (D/P allowance). Failure to identify proper blank dimensions and D/H ratio can lead to production defects such as tears, while failure to recognize the correct clearance can cause wrinkles. This article discusses technology dissemination to Small and medium-sized enterprises (SMEs) for the deep drawing process in producing R-ornament components #3D40x40, considering these crucial parameters. R-ornament #3D40x40 was manufactured using SPCC-SD material with a thickness of 0.65 mm. The Participatory Action Research (PAR) method was employed to collaboratively optimize blank dimensions, D/H ratio, and dies/punch (D/P) allowance with partners. The optimization of blank dimensions successfully eliminated the need for the trimming process, resulting in reduced investment costs in dies and die setup by IDR 15 million and 2.16 million, respectively. Identifying a D/H ratio of 1.32 successfully eliminated tear defects and determining a D/P allowance of 0.87 mm on each side eradicated wrinkle defects in the product. This article contributes to Goal 9 of the Sustainable Development Goals (SDGs), specifically focusing on the Small and Medium-sized Enterprises (SMEs) sector.
Optimizing energy harvesting from waste motor oil through steam reforming: A path to efficient combustion and emissions reduction Budi Waluyo; Bambang Pujiarto; Nofa Ardana; An’nisa Solihah; Muhammad Latifur Rochman; Ahmad Tresno Adi
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10362

Abstract

Waste Motor Oil (WMO) is a hazardous waste material with the potential to contaminate water, soil, and the atmosphere. The management and engineering of WMO have become imperative in modern society for both resource utilization and environmental protection. Maximizing the energy content of WMO poses a significant challenge for researchers, to solve environmentally friendly solutions. Direct combustion of WMO often results in incomplete combustion and elevated CO emissions. Therefore, this research aims to optimize the harnessing of WMO's energy potential through a furnace equipped with steam injection. The steam is generated by utilizing the heat energy produced during the WMO heating process. Our study demonstrates that steam injection in the WMO furnace is an effective method for maximizing energy content while simultaneously reducing CO emissions.
Thermodynamic modelling of a novel solar-ORC with bottoming ammonia-water absorption cycle (SORCAS) powered by a vapour compression refrigeration condensate for combined cooling and power Fidelis Ibiang Abam; Macmanus Chinenye Ndukwu; Oliver Ibor Inah; Onyishi Donatus Uchechukwu; Muji Setiyo; Olusegun David Samuel; Remy Uche
Mechanical Engineering for Society and Industry Vol 3 No 2 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10365

Abstract

The current study proposed an innovative combined power and cooling solar Organic Rankine Cycle (ORC) with bottoming vapour absorption (VAS) and vapour compression refrigeration (VCP) cycles using ammonia–water as the working fluid. The advantage of these cycles is the integration of two cooling evaporators, producing equivalent refrigerating effects from the VCP condensate. The power generation sub-system, the topping cycle, employed a solar-driven ORC. At operating conditions, the energy and exergy efficiencies stood at 38.63 and 42.09%, respectively, with overall refrigerating effect, power output, and COP calculated at 1358 kW, 26.65 kW, and 2.34 in that order. The parametric results indicated a 40% and 55% increase in energy and exergy efficiencies at high turbine inlet temperatures, with a 1.73 % increase in refrigerating effect and a 1.56% decrease in the exergy of cooling. Similarly, at an elevated generator pressure of 4.75 bar, an overall COP of 3.046 was reached. The total exergy of products and fuel was calculated at 1347.91 and 786.38 kW, respectively, with an exergy destruction ratio of 0.997. The results showed a total improvement potential (IP) of 426.768 kW, with the evaporators, absorber, and heat exchanger having the highest IP of 66. 32, 119.4, and 68.08 kW respectively. The study showed enhancement in performance when compared with previous studies and recommended system optimization and sustainability analysis as future considerations for system practical application.
Development of magnesium biocomposites with hydroxyapatite or carbonate apatite reinforcement as implant candidates: A review Yusuf Subagyo; Baharudin Priwintoko; Rifky Ismail; Deni Fajar Fitriyana; I Nyoman Jujur; Iwan Setyadi; Galih Taqwatomo
Mechanical Engineering for Society and Industry Vol 3 No 3 (2023): Special Issue on Technology Update 2023
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10389

Abstract

Metal materials used as bone implants are not new today. In fact, almost 70% of implant materials are made of metal. Magnesium biocomposites with Carbonate Apatite or Hydroxyapatite reinforcements have promising potential as implants, one of the properties of these composites is biocompatible and bioactive to accelerate bone growth. There have been many studies on the development of Mg-CAp and Mg-HAp as biocomposite implant materials. Various methods of making these biocomposites have been carried out, such as sintering, microwave, coating, casting, and extrusion. From the fabrication process, observations were made regarding mechanical properties and chemical structure. The results show that CAp and HAp can suppress the corrosion rate of Magnesium, which is one of the weak properties that must be improved. Then it can increase the biological activity of Mg composites and has the ability of bone induction and bone conduction. In addition, the mechanical properties have increased in tensile, compression, and microhardness testing. However, so far, the research on Mg-HAp and Mg-CAp has only been limited to animal testing and has not been applied to humans. So, the potential for development and research is still open actually to be implemented in the orthopedic field.
Effect of sintering temperature and polyvinyl alcohol composition as binder on the formation of porous hydroxyapatite as bone graft using sponge replication method: A review Baharudin Priwintoko; Rifky Ismail; Deni Fajar Fitriyana; Yusuf Subagyo; Athanasius Priharyoto Bayuseno
Mechanical Engineering for Society and Industry Vol 3 No 3 (2023): Special Issue on Technology Update 2023
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10397

Abstract

Hydroxyapatite (HA) is one of the inorganic components that has a role as a bone regeneration material. The potential for utilizing waste is one of the opportunities in HA commodities. Several waste materials that can be used as raw materials for HA include egg shells, beef bones, fish bones, limestone, and marine biota shells. Nowadays, the use of HA is not only limited to regeneration materials but also as a bone tissue scaffold. Porous HA is a form of HA that is in great demand today because it can be a good scaffold and regeneration material. One method that can be used to fabricate porous HA is the sponge replicated method. In its fabrication, the sponge replicated method is influenced by sintering temperature and binder composition. Polyvinyl alcohol (PVA) is a widely used binder because it can be evaporated without leaving traces and is biocompatible. This paper will examine the effect of sintering temperature and composition of PVA as a binder in pore HA fabrication. In particular, this paper compares the fabrication process with the characteristics of the resulting porous HA against commercial products and ISO 13379:2015 standards. According to the preliminary study, pore HA that conforms to the standard will have a good impact on the healing process of bone defects. The novelty of this research is to explore in depth related to the fabrication of HA pores using the sponge replicated method with sintering temperature parameters and the composition of PVA as a binder so that it is expected to be a literature for future researchers.