cover
Contact Name
Utama Alan Deta
Contact Email
utamadeta@unesa.ac.id
Phone
+628993751753
Journal Mail Official
jpfa@unesa.ac.id
Editorial Address
Fakultas Matematika dan Ilmu Pengetaahuan Alam Jl. Ketintang, Gd C3 Lt 1, Surabaya 60231
Location
Kota surabaya,
Jawa timur
INDONESIA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA)
ISSN : 20879946     EISSN : 24771775     DOI : https://doi.org/10.26740/jpfa
Core Subject : Science, Education,
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) is available for free (open access) to all readers. The articles in JPFA include developments and researches in Physics Education, Classical Physics, and Modern Physics (theoretical studies, experiments, and its applications), including: Physics Education (Innovation of Physics Learning, Assessment and Evaluation in Physics, Media of Physics, Conception and Misconceptions in Physics, hysics Philosophy anPd Curriculum, and Psychology in Physics Education); Instrumentation Physics and Measurement (Sensor System, Control System, Biomedical Engineering, Nuclear Instrumentation); Materials Science (Synthesis and Characteristic Techniques, Advanced Materials, Low Temperature Physics, and Exotic Material); Theoretical and Computational Physics (High Energy Physics, Gravitation and Cosmology, Astrophysics, Nuclear and Particle Phenomenology, and Computational and Non-Linear Physics); and Earth Sciences (Geophysics and Astronomy).
Articles 12 Documents
Search results for , issue "Vol. 10 No. 1 (2020)" : 12 Documents clear
Simple Experiment of Doppler Effect Using Smartphone Microfon Sensor Adam Malik; Widiastuti Ledgeriani Mugiri; Rizki Zakwandi; Sani Safitri; Tia Juliani
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p1-10

Abstract

Doppler effect is the physical phenomena in which the emitted frequency is a source of change at a time when accepted by the detector due to relative movement of the detector towards the source of the wave or vice versa. This research aims to identify the Doppler effect symptoms by utilizing sensors found in smartphones. This research uses experimental method that combine the mechanical instruments and microphone smartphone sensor as measurement tool. The mechanical instruments used are a smartphone with the help of frequency sound generator software, Physics Toolbox, the camera as an instrument of data collectors, and Tracker as a motion analyzer software. Based on the results of the experiments, the author retrieved the value of the error and the standard deviation of each of the observed symptoms. The symptoms of Doppler effect upon source moving closer and moving away when the silent observer shows the error value of 0.04 % and 0.1185 % respectively with a standard deviation of 0.018 and 1.005. In addition, the experiment on Doppler effect as the source is staying still and as the observer approaching the source provides error value of 8.60 % and standard deviation of 13.501. As for the experiment on Doppler effect as the source and the observers are approaching each other displays the error value of 4.31 % and the standard deviation of 0.087. Overall, this experiment generates error value of 3.267 % and standard deviation of 3.665, inferring that the experiments conducted are accurate and precise in representing the Doppler effect phenomenon. Based on the results of this experiments, the researcher recommends to carry out practicum on Doppler effects with the help of smartphone sensors.
Developing Student Worksheets Using Inquiry-based Learning Model with Scientific Approach to Improve Tenth Grade Students Physics Competence Yulkifli Yulkifli; Rosly Jaafar; Liza Resnita
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p56-70

Abstract

Students' Physics Competencies are not still optimal. One of the causes is the use of student worksheets as the teaching materials that have not yet been suitable for the structure of good student worksheets. In addition, the student worksheets are not developed using the inquiry-based learning model and scientific approach. The purpose of this study is to describe the characteristics and produce valid, practical, and effective student worksheets using the inquiry-based learning model with a scientific approach to improve the tenth-grade students' physics competencies. This research used the Plomp model as the design, which consisted of preliminary research, development or prototyping, and assessment. The data were analyzed using a descriptive percentage technique, describing the student worksheets' validity, practicality, and effectiveness. Based on the preliminary research results, it was found that needs analysis, student analysis, and material analysis were required to be a reference in developing student worksheets using the inquiry-based learning model with a scientific approach. The design stage results show that the student worksheets have been designed using an inquiry-based learning model with a scientific approach. The results of the development phase show that the student worksheets meet the valid criteria of 0.94. The implementation phase results show that the student worksheets meet the very practical criteria based on the teacher's and students' responses, with the percentage of 91.05% and 78.39%, respectively. The results of the evaluation phase show that the student worksheets meet the effective criteria, including attitude (85.81%), knowledge (85.46%), and skills (85.69%). Based on the results of the study, it is concluded that the student worksheets using the inquiry-based learning model with an effective scientific approach to improve the tenth-grade students' physics competencies.
The Segmentation of Neutron Digital Radiography Image through the Edge Detection Method Ayu Fitri Amalia; Widodo Budhi
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p11-21

Abstract

The digital image processing is one way to manipulate one or more digital images. Image segmentation has an essential role in the field of image analysis. The aim of this study was to develop an application to perform digital image processing of neutron digital radiographic images, hoping to improve the image quality of the digital images produced. The quality of edge detection could be used for the introduction of neutron digital radiographic image patterns through artificial intelligence. Interaction of neutrons with the matter mainly by nuclear reaction, elastic, and inelastic scattering. A neutron can quickly enter into a nucleus of an atom and cause a reaction. It is because a neutron has no charge. Neutrons can be used for digital imaging due to high-resolution information from deep layers of the material. The attenuated neutron beam in neutron radiography are passing through the investigated object. The object in a uniform neutron beam is irradiated to obtain an image neutron. The technique used in segmenting the neutron radiography in this study was a digital technique using a camera with a charge-coupled device (CCD), which was deemed more efficient technique compared to the conventional one. Through this technique, images could be displayed directly on the monitor without going through the film washing process. Edge detection methods were implemented in the algorithm program. It was the first step to complement the image information where edges characterize object boundaries. It is useful for the process of segmenting and identifying objects in neutron digital radiography images. The edge detection methods used in this study were Sobel, Prewitt, Canny, and Laplacian of Gaussian. According to the results of the image that have been tested for edge detection, the best image was carried out by the Canny operator because the method is more explicit. The obtained edges were more connected than the other methods which are still broken. The Canny technique provided edge gradient orientation which resulted in a proper localization.
Microtremor Data to Strengthen the Students Mastery of Materials in the Implementation of Integrated Physics Learning Rohima Wahyu Ningrum; Hendra Fauzi; Wiwit Suryanto; Estuning Tyas Wulan Mei; Risky Nuri Amelia
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p81-89

Abstract

A geophysical research has been conducted to determine the level of hazard vulnerability in West Halmahera by using microtremor data. Microtremor data are analyzed using the Horizontal to Vertical Spectral Ratio (HVSR) method and it is processed using Geopsy software to know hazard vulnerability level in the region . Data analysis and processing are used as sources of information in physics learning materials using an integrated learning model. Research objectives are to train the students to understand the materials in the fields of study and to enhance other discovery ideas.This research method uses the correlational method and the type of research is experimental research. The research design is an uniquecase research design and the instrument used is tests and questionnaires. The results of this research indicate that the microtremor data using integrated learning models of integrated types have effect on the students Mastery of materials in the implementation of physics learning. The effect of the integrated learning model of integrated type on the students Mastery of materials on the concepts of vibration and waves is 16% and it is in low category. Whereas, the students' responses to integrated learning model of integrated type are quite fun and it can help to improve their mastery of the material on the concepts of vibration and waves.
Identification of Source Mechanisms for the August 5 2018 Mw 6.9 and the August 9 2018 Mw7.0 Lombok Earthquakes Ramadhan Priadi; Yusuf Hadi Perdana; Angga Wijaya; Iman Suardi
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p44-55

Abstract

A series of earthquakes with magnitudes ranging from 5.8 to 7.0 occurred in Lombok in the period of July to August 2018. Two events occurred consecutively, the 6.9 on August 5, 2018 (11:46:38 UTC), and the 7.0 on August 9, 2018 (14:56:28 UTC). Those phenomena are rare because earthquakes usually require a relatively long time to accumulate their energies before being released. Because of those events, so an explanation is needed to explain what happened at the source. In this context, this study aims to determine the relations between the events based on the asperity zone and the slip distributions. Modeling was performed using teleseismic data and seismic inversion of body waves at low frequencies. The result shows that the asperity zone of 6.9 is at 0 km in a strike-direction and -18 km wide in a dip-direction with a maximum slip of 1.3 m, whereas, for the 7.0 event, the asperity zone is at -36 km in the direction of the strike and -7 km in the direction of the dip. Both events have the asperity in the up-dip section with an upward slip distribution towards the up-dip. The slip distribution of the first event and the second one has a relationship because the 6.9 earthquake slip leads to the 7.0 earthquake fault plane. The relation is suspected to be due to the weakening of rock conditions and an enlargement that is limited by space and time during the earthquake. As a result, those two earthquakes are closely related to stress distribution, forming a new asperity zone.
Characterization of Temperature Response of Asymmetric Tapered-Plastic Optical Fiber-Mach Zehnder Interferometer Ian Yulianti; Ngurah Made Darma Putra; Fianti Fianti; Abu Sahmah Mohd Supaat; Helvi Rumiana; Siti Maimanah; Kukuh Eka Kurniansyah
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p34-43

Abstract

Temperature measurement is important in various applications; therefore, various temperature sensors have been developed. Due to its advantages, many optical fiber-based temperature sensors have been proposed. The wavelength modulation-based optical sensor is interesting due to high accuracy. However, the complex fabrication process and high cost limit the advantages of the sensors. Therefore, we proposed a simple and low-cost Mach Zehnder interferometer (MZI) sensor using step-index plastic optical fiber (SI-POF). Performance characterization of the sensor to temperature variation is presented. The sensor consists of two tapers at several distances, forming an interferometer. The first taper was designed to be steep to allow excitation of cladding modes, while the second taper was gradual to suppress power loss. Characterizations were done in terms of sensitivity, hysteresis, and repeatability by analyzing the output spectrums recorded by the spectrometer at various environment temperatures, 35oC to 85oC, with an increment of 10oC. The results showed that the sensor has a sensitivity of 0.0431 nm/oC and a correlation coefficient of 0.9965. Hysteresis of 6.9×10-3 was observed. In terms of repeatability, the sensor shows a maximum deviation, ±3oC, which was mainly resulted from the fluctuation of the oven temperature. Despite its high deviation, the sensor has advantages of simple fabrication, low cost, robust, and low power loss, which make it a good candidate for temperature sensors.
Identification of the Grindulu Fault in Pacitan, East Java using Magnetic Method Latifatul Cholifah; Nurul Mufidah; Eden Lazuardi; Bagus Jaya Santosa; Sungkono Sungkono; Arif Haryono
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p22-33

Abstract

Magnetic method in geophysical surveys is common for its non-destructive use of sub-surface structure delineation. In this study, ground-based measurements of magnetic intensity were performed using a set of instruments in some regions of Pacitan, a city in the southern area of East Java province. Based on these measurements, data acquisition was used to identify the Grindulu faulting zone in the region of interest, potentially vulnerable to geohazards. The data were first corrected using the IGRF and diurnal corrections. A filtering technique of upward continuation at a height of 900 m was then applied to separate local anomalies from regional ones as the targeted sources in the present case. These separate anomalies and their corresponding reductions to the poles as further filtering processes were analyzed for predicting the location and direction of the fault. The results, extracted from data analysis and interpretation, show that the main path of the Grindulu is directed along the NE-SW fault line or N60oE. The resulting anomalies also reflect that the Grindulu is a normal fault with surrounding minor faults lying across the Grindulu, calling for increased awareness of vulnerability in the city to seismic threats.
ORNE Learning Model to Improve Problem-Solving Skills of Physics Bachelor Candidates: An Alternative Learning in the Covid-19 Pandemic Binar Kurnia Prahani; Ali Hasbi Ramadani; Diah Hari Kusumawati; Nadi Suprapto; Madlazim Madlazim; Budi Jatmiko; Zainul Arifin Imam Supardi; Husni Mubarok; Shabrina Safitri; Utama Alan Deta
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p71-80

Abstract

In this industrial revolution 4.0 era, professional science, technology, engineering, and mathematics (STEM) bachelor must have various skills. One of which is problem-solving skills. The development of problem-solving skills (PSS) is very important in higher education. Students must have PSS that must be improved to become excellent graduates, including physics bachelor candidates. Many physics bachelor candidates lack problem-solving skills. This problem is the basis for developing innovative learning models based online that, by design, can improve the problem-solving skills of physics bachelor candidates in the COVID-19 pandemic. This research aims to analyze the effectiveness ORNE learning model in improving the problem-solving skills of physics bachelor candidates as an alternative to online learning in the COVID-19 pandemic. The research design used a true-experiment with a non-equivalent control group design with 58 physics bachelor candidates. Data collected using the problem-solving skills test and then analyzed using the Paired Sample Test, Effect Size, N-gain, and Independent Sample Test. The results showed that the ORNE learning model proved effective in improving physics bachelor candidates' problem-solving skills. This research implies that the ORNE learning model can improve physics bachelor candidates' problem-solving skills as an alternative to online learning in the COVID-19 pandemic.
Introduction, Author Guidlines, and Table of Contents JPFA Vol 10 No 1 June 2020 Editor JPFA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.pi-vi

Abstract

Acknowledgment JPFA Vol 10 No 1 June 2020 Editor JPFA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.pvii-viii

Abstract

Page 1 of 2 | Total Record : 12