Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : ComEngApp : Computer Engineering and Applications Journal

Identification of Indonesian Authors Using Deep Neural Networks Firdaus Firdaus; Irvan Fahreza; Siti Nurmaini; Annisa Darmawahyuni; Ade Iriani Sapitri; Muhammad Naufal Rachmatullah; Suci Dwi Lestari; Muhammad Fachrurrozi; Mira Afrina; Bayu Wijaya Putra
Computer Engineering and Applications Journal Vol 11 No 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (402.465 KB) | DOI: 10.18495/comengapp.v11i1.398

Abstract

Author Name Disambiguation (AND) is a problem that occurs when a set of publications contains ambiguous names of authors, i.e. the same author may appear with different names (synonyms) in other published papers, or author (authors) who may be different who may have the same name (homonym). In this final project, we will design a model with a Deep Neural Network (DNN) classifier. The dataset used in this final project uses primary data sourced from the Scopus website. This research focuses on integrating data from Indonesian authors. Parameters accuracy, sensitivity and precision are standard benchmarks to determine the performance of the method used to solve AND problems. The best DNN classification model achieves 99.9936% Accuracy, 93.1433% Sensitivity, 94.3733% Precision. Then for the highest performance measurement, the case of Non Synonym-Homonym (SH) has 99.9967% Accuracy, 96.7388% Sensitivity, and 97.5102% Precision.