Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Aceh International Journal of Science and Technology

Adsorption Of Cd(II) Ions From Aqueous Solution By A Low-Cost Biosorbent Prepared From Ipomea Pes-Caprae Stem Thaharah Ramadhani; Faisal Abdullah; Indra Indra; Abrar Muslim; Suhendrayatna Suhendrayatna; Hesti Meilina; Saiful Saiful
Aceh International Journal of Science and Technology Vol 9, No 3 (2020): December 2020
Publisher : Graduate Program of Syiah Kuala University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (682.648 KB) | DOI: 10.13170/aijst.9.3.18256

Abstract

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature
Study on the optimization of mercury ion (II) adsorption with activated carbon from a biomass combination of palm bunches and rice husk Suhendrayatna Suhendrayatna; Abdurrahman Abdurrahman; Elvitriana Elvitriana
Aceh International Journal of Science and Technology Vol 8, No 3 (2019): December 2019
Publisher : Graduate Program of Syiah Kuala University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (799.769 KB) | DOI: 10.13170/aijst.8.3.15160

Abstract

This research deals with the adsorption of mercury ions [Hg (II)] using a combination of natural biomass between oil palm bunches and rice husks (PB-RH). After drying at 40oC, PB-RH biomass was carbonized by using a tube furnace for 2 hours at 500 °C and followed chemical activation with citric acid. Activated carbon formed was contacted with an aqueous solution containing Hg (II) ion and stirred at a constant rate of 150 rpm. The concentration of Hg (II) ions in the aqueous phase were analyzed with Atomic Absorption Spectrophotometer (AAS) and the Central Composite Design (CCD) method with Design-Expert software version 6.0.8 was conducted to calculate the optimization of adsorption capacity for mercury ion. The Hg ion adsorption capacity was estimated to observe the performance of the PB-RH biomass combination on the adsorption of Hg (II) ions with some variables, such as contact time, biomass weight, and activator concentration. Results showed that all variable response, contact time, biomass weight, and activator concentration influenced the mercury (II) ion adsorption capacity. The optimum condition of Hg (II) ion adsorption occurred at 30 g of activated PB-RH biomass with 0.6 mole/L concentration of activator during 99.88 minutes with 99.42 mg/L initial concentration of Hg (II). The adsorption capacity occurred at 10.1 mg/g as the optimum condition for the adsorption of Hg (II) ions by PB-RH.
Adsorption of Phosphate from Aqueous Solution by Calcination of Silicified Coal: Kinetic and Isotherm Studies Lisa Fandana; Faisal Abdullah; Abrar Muslim; Suhendrayatna Suhendrayatna; Hesti Meilina
Aceh International Journal of Science and Technology Vol 12, No 2 (2023): August 2023
Publisher : Graduate Program of Syiah Kuala University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13170/aijst.12.2.31967

Abstract

Silicified coal (SC) consisting of SiO2 is promising raw material for adsorbent. The present study aimed to utilize the adsorbent of silicified coal bottom ash (SCBA) by calcination of the SC at the temperature of 600, 800 and 1000 oC for 1 hour. The FTIR result showed that the SCBA-600, SCBA-800 and SCBA-1000 had chemical functional groups such as the asymmetric Si-O-Si, the symmetric Si-O-Si and Si-O-Si bond rocking for adsorption of phosphate (PO43−) with the lowest percentage of transmittance of SCBA-1000. The adsorption test showed that a rapid adsorption occurred in the first 10-min of contact time, and it did not change significantly for the rest of contact time until reaching an equilibrium time of 30 min. The PO43− adsorption efficiency and capacity fluctuated over initial PO43− in solution in the range of 60.02–480.29 mg/L. The highest PO43− adsorption efficiency and capacity was at 480.29 mg/L, which was 95.49 % and 45.86 mg/g, respectively using the SCBA-1000. The adsorption kinetic fitted better to pseudo second-order kinetics model (average R2 = 0.999) with the adsorption capacity of 45.454, 45.662 and 45.872 for the SCBA_600, SCBA_800 and SCBA_1000, respectively, and the PO43− adsorption rate was 0.0007, 0.0008 and 0.001 g/mg.min, respectively. The adsorption isotherm followed Langmuir model (average R2 = 0.873) with the adsorption capacity being 2.357, 1.198 and 8.196 mg/g, respectively, and the pore volume being 0.0316, 0.0364 and 0.2103 L/mg, respectively