cover
Contact Name
Heru Suryanto
Contact Email
jmest.journal@um.ac.id
Phone
+62341588528
Journal Mail Official
jmest.journal@um.ac.id
Editorial Address
3rd floor of H5 Bulding, Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang Jl. Semarang 5 Malang, Jawa Timur, 65145 Telp 0341-588528 / 0341-551312 ext 298
Location
Kota malang,
Jawa timur
INDONESIA
Journal of Mechanical Engineering Science and Technology
ISSN : 25800817     EISSN : 25802402     DOI : 10.17977
Journal of Mechanical Engineering Science and Technology (JMEST) is a peer reviewed, open access journal that publishes original research articles and review articles in all areas of Mechanical Engineering and Basic Sciences
Articles 96 Documents
Study on The Thermal Distortion, Hardness and Microstructure of St 37 Steel Plate Joined Using FCAW Maijuansyah Maijuansyah; Yanuar Rohmat Aji Pradana; Gaguk Jatisukamto; Solichin Solichin
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 1 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1033.162 KB) | DOI: 10.17977/um016v3i12019p018

Abstract

This study sets out to investigate the distortion angle, microstructure, and hardness of St 37 steel plate weld joint produced by FCAW using the welding current of 80, 110, and 140 A. By using flat position, CO2 and E71T-1 wire were utilized as a shielding gas and electrode filler, respectively. The distortion angle measurement was done on 3 different locations of the welded sample perpendicular to weld direction by using bevel protractor. The micro Vickers tests were then applied gradually at the cross-sectional surface with a distance of 0, 5, 10 and 15 mm from weld centreline using the load of 300 g for indentation time of 15 s. A series of microstructural observations were subsequently directed on cross-sectional weld joint regions including base metal, heat-affected zone (HAZ) and weld metal to investigate the microstructural transformation. From the results, it can be observed that increasing welding current can reduce the hardness at all indentation regions as well as inducing a higher level of thermal distortion occurred on a weld joint, especially at HAZ. The microstructural transformation was also observed at sample welded using various welding current. Both heat input and cooling rate subjected to the welded sample played an important role to characterize their properties.
The Characteristic of Overhang Object to Material Usage on FDM 3D Printing Technology Redyarsa Dharma Bintara; Aminnudin Aminnudin; Dani Prasetiyo; Ferian Rizki Arbianto
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 1 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (985.154 KB) | DOI: 10.17977/um016v3i12019p035

Abstract

Fuse Deposition Modeling (FDM) 3D printing is one of additive manufacturing technology which physical 3D model is build up layer by layer. The support structure is almost involved on the process if overhang shape is met on the 3D model. It has main function to prevent the 3D printed model from collapsing. Commonly, the single material source of FDM 3D printer machine is to supply building two structure, structure of main 3D object and support structure. Hence, our goal optimizes the using of support material for reducing the main material usage. Furthermore, the sixteen of variation overhang angle is set to the 3D model. All models are printed into two kind of 3D printed model, printed model with support structure addition and without support addition. The weight of each 3D printed model is measured by weight scale with accuracy of tool is 10-4 g. Then the quality and the weight of 3D printed model are compared and analyzed. The result shows that the average overweight of 3D printed model with support structure addition is 40.41% than without support structure addition. Furthermore, there are several the 3D printed models without support structure that fail printed on variety model with 0° until 11° of overhang angle. The conclusion of this study is that the support structure can prevent the 3D printed model from collapsing but it does not need be built up if the overhang angle more than 11°.
The Effect of Chemical Pretreatment Process on Mechanical Properties and Porosity of Cellulose Bacterial Film Tito Arif Sutrisno; Heru Suryanto; Retno Wulandari; M. Muhajir; S.M.Shahrul N.S. Zahari
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 1 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1322.495 KB) | DOI: 10.17977/um016v3i12019p008

Abstract

Bacterial cellulose (BC) is a natural polymer which have superior properties, like high porosity, high purity, and high permeability. The study objective is to determine the influence of chemical pretreatment on tensile strength and the porosity of BC. The method was to make BC films from pineapple peel extract through fermentation process for 14 days. The pretreatment was conducted by immersion of BC in BmimCl, H2O2, and NaOH solution with a concentration of 2.5%; 5%; and 7.5 %, heated at 80 °C then dried in the oven, and the samples were then tested by a tensile test using ASTM-D636-V standard, morphology analysis using Scanning Electron Microscope, and porosity analysis. The results indicate that the tensile strength of control sample was 123 MPa, whereas after chemical pretreatment, the tensile strength was decreased with the greater reduction occurred using NaOH pretreatment compared than the other solutions that having a lower tensile strength of 8.54 MPa at 7.5 % of NaOH. The results of porosity show that the value increased after being treated chemically. The BC film porosity was 87.13% after  NaOH treatment of 7.5% while BC film untreated had porosity of 19.15%. This phenomenon was occurred due to the increasing pore, so the absorption of water increased.
Comparison Study of Mechanical Properties of Al-Si Alloy with and without Nanoreinforce Iron Oxide (Fe2O3) Cepi Yazirin; Poppy Puspitasari; Muhamad Fatikul Arif
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 1 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (852.07 KB) | DOI: 10.17977/um016v3i12019p029

Abstract

Nanoreinforce materials such as ZnO, eggshell, Al2O3, TiO2, and ZrO2 have been shown to improve the mechanical properties of Al-Si alloy. Nanomaterial Fe2O3 has many applications as catalysts reaction in electronic devices, for example, semiconductor materials, paint formulations, lithium rechargeable batteries, and is often applied in industrial fields. It is known that Fe2O3 can be synthesized through the stirring process on machine and method used will involve several steps that relatively take a long time. In this study, Al-Si alloy reinforced by using nanomaterial Fe2O3 which sintered at a temperature of 600°C for 3 hours aimed to improve mechanical and morphological properties of Al-Si alloy. The method used was stir casting, where this method was known as flexible, simple, and economic. The result of reinforcing Al-Si alloy by using nanomaterial Fe2O3 had affected on the hardness level of Al-Si alloys as evidenced by the fracture morphology that was brittle and had a light reflection
Synthesis and Applications of Hematite α-Fe2O3 : a Review Muhamad Muhajir; Poppy Puspitasari; Jeefferie Abdul Razak
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 2 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (739.115 KB) | DOI: 10.17977/um016v3i22019p051

Abstract

This article reviewed the hematite α-Fe2O3, which focuses on its material properties, nanostructures, synthesis techniques, and its numerous applications. Researchers prepared the hematite nanostructure using the synthesis methods, such as hydrothermal, and, further, enhanced it by improving the techniques to accommodate the best performance for specific applications and to explore new applications of hematite in humidity sensing.
Characteristic Analysis of Horizontal Axis Wind Turbine Using Airfoil NACA 4712 Bili Darnanto Susilo; Gaguk Jatisukamto; Muh Nurkoyim Kustanto
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 2 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6018.754 KB) | DOI: 10.17977/um016v3i22019p096

Abstract

Wind energy has been developed and used as a source of electrical energy by converting wind energy into electrical energy using a generator. There are some wind turbine parameters that important for wind turbines design and model, includes the size of the rotor radius, airfoil selection, chord length, and pitch angle. The study aims to characterize the performance of a horizontal axis wind turbine using computational methods. The methods used a design and simulation of NACA 4412 and NACA 4712 airfoil using QBlade software using wind conditions in the region of Pancer, Jember.  Results show that the maximum Cl value of NACA 4712 is higher than in NACA 4412. NACA 4712 has a maximum Cl value = 1.696 at α = 14o while NACA 4412 airfoil has a maximum value of Cl = 1.628 at α = 15o. NACA 4712 has the maximum value of Cl/Cd = 153 at α = 2o , while the NACA 4412 has a maximum value of Cl/Cd = 133.5 at α = 5.5o. The maximum value of Cl/Cd 4712 is higher than the NACA 4412. At 7.66 m/s of wind speed with 10% turbulence conditions, wind turbines with NACA 4712 airfoil have Cp turbine performance parameters of 0.49929 and obtain a power of 1.15 kW, while wind turbines with NACA 4412 have Cp turbine performance parameters of 0.395365 and obtained power of 0.889 kW at the same wind speed.
The Effect of Chlorophyll Concentration from Papaya Leaves on the Performance of Dye Sensitized Solar Cell Dede Rizali; Heru Suryanto; Sukarni Sukarni
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 2 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (934.282 KB) | DOI: 10.17977/um016v3i22019p059

Abstract

Dye-Sensitized Solar Cell (DSSC) is the third generation solar cell that has sandwich structure consisted of organic dye material and other components such as titanium dioxide (TiO2) semiconductor, electrolyte, and substrates (counter electrode and working electrode). The dye in the device was made from green plant chlorophyll such as papaya. This research aimed to find the influence of dye concentration from papaya leaves chlorophyll on the performance of DSCC. The discussion covered the output power (Pout), Fill Factor (FF), and efficiency (ɳ). The method in this research was explorative experimental with independent variables such as direct and indirect sunlight. The dependent variables were output power (Pout), Fill Factor (FF), and efficiency (ɳ) from the DSSC. The procedures in this research consisted of substrates preparation, TiO2 paste production, dye solution preparation, electrolyte preparation, counter electrode preparation, and DSSC assembly. The tests on chlorophyll concentration were conducted using spectrophotometry method while the DSSC performance test used 1,000 W/cm2 halogen lamp. The results showed that 100% chlorophyll concentration resulted in 3.1295 mg/m3 chlorophyll content type a. The best DSSC performance was obtained by the DSSC sample that had 100% chlorophyll concentration and 1.1294 mg/m3 chlorophyll content. The direct light of DSSC achieved Pout of 0.9557 mW, FF of 0.07282, and efficiency of 1.499137%. The DSSC with indirect light obtained Pout of 0.00455 mW, FF of 0.01535, and efficiency of 0.049863%.
The Flame Characteristics of Diesel Fuel Blend with Kepuh (Sterculia Foetida) Biodiesel Dani Hari Tunggal Prasetiyo; Nasrul Ilminnafik; Sallahudin Junus
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 2 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (542.467 KB) | DOI: 10.17977/um016v3i22019p070

Abstract

Kepuh biodiesel fuel (sterculia foetida) is an alternative fuel that can be used to replace fossil fuel. Diesel fuel is performed to determine the laminar flame speed of combustion and high flame by adding biodiesel kepuh volume of 10%, 20%, 30%. The purpose of this study was to study the effect of biodiesel and the effect of bunsen burners on the laminar flame speed of combustion and flame height. Bunsen burner is made of copper and stainless steel. Testing of flame characteristics were carried out by heating the mixture of fuel and air at temperature of 200oC. The purpose of heating the air is to prevent cooling when mixed with fuel. The mixture of fuel and air flowed into the mixing chamber and bunsen burner. The mixture of fuel and water flows into the mixing chamber and bunsen burner to form a fire. Flame images were recorded using a high speed fuji film camera with a speed of 480 fps with a resolution of 224x168. The test results were analyzed by measuring the angle and height of the flame using the freeware imageJ program. The results of the B10 (diesel oil without the addition of biodiesel) fuel mixture test using copper bunsen burner produced a maximum laminar flame speed of 23.6264 cm / s at φ = 0.8. The highest value of the B30 fuel mix flame (30% full biodiesel + 70% diesel oil) produces a maximum flame value using a stainless steel bunsen burner with a value of 25,417 mm at φ = 1.2. The results showed that B10 in copper bunsen burner had the highest laminar burn rate. The composition of the fuel and bunsen burner affects the combustion characteristics and flame height.
Critical Solid Fraction Point Analysis: Case Study on Cement Mill Machine Diaphragm Mochamad Achyarsyah; Poppy Puspitasari
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 2 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (507.943 KB) | DOI: 10.17977/um016v3i22019p081

Abstract

During the solidification process, metal liquids turn into solid geometry units including the riser and gating system. The disruption in the liquid flow often causes shrinkage in the object. Critical Solid Fraction Point is a critical point where the continuous liquid supply turned solid and unable to pour to some sections. Simulation software can predict the critical solid fraction time of an object and the liquid supply behavior. The simulation helps the designer in the casting design. The application of low steel alloys in the cement industry, e.g., the Diaphragm, needs development to minimize the shrinkage. This research aimed to analyze the critical solid fraction point in the diaphragm steel casting products. The primary objective of this research was to predict the critical solid fraction point during solidification, started from the longest time in the riser/feeder using SOLIDCast 8.1.1 casting software and provided improvement recommendation to minimize the shrinkage.
Failure Analysis on Titen Proto-XX Car Chasis Gaguk Jatisukamto; Rika Dwi Hidayatul Qoryah; Santoso Mulyadi
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 2 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1697.185 KB) | DOI: 10.17977/10.17977/um016v3i22019p088

Abstract

The car chassis as a skeleton supports all loads and is the most important component. Car chassis requirements must be rigid, twisting resistant, vibration resistant and resistant to fatigue. This study aims to find the cause of the failure of the Titen Proto-XX car chassis connection. The research methodology was conducted by testing the composition of materials and structural analysis using Ansys Workbench Release 15.0 software. The conclusion of the research is that the skeletal structure material uses Aluminum AA series 1XXX with Al content greater than 99.5%, the welding ability is low, causing a failure in the welded joint. The rivet connection failure is caused by the stress concentration in the rivet holes in the plates so that the connection crack propagation occurs.

Page 4 of 10 | Total Record : 96