cover
Contact Name
Muji Setiyo
Contact Email
muji@unimma.ac.id
Phone
+6282330623257
Journal Mail Official
autoexp@unimma.ac.id
Editorial Address
Universitas Muhammadiyah Magelang, Jl. Bambang Soegeng KM. 4 Mertoyudan Magelang, Telp/Faks : (0293) 326945
Location
Kab. magelang,
Jawa tengah
INDONESIA
Automotive Experiences
ISSN : 26156202     EISSN : 26156636     DOI : 10.31603/ae
Automotive experiences invite researchers to contribute ideas on the main scope of Emerging automotive technology and environmental issues; Efficiency (fuel, thermal and mechanical); Vehicle safety and driving comfort; Automotive industry and supporting materials; Vehicle maintenance and technical skills; and Transportation policies, systems, and road users behavior.
Articles 134 Documents
Combustion and Emission Characteristics of CNG-Diesel Dual Fuel Engine with Variation of Air Fuel Ratio Dori Yuvenda; Bambang Sudarmanta; Jamaludin Jamaludin; Oki Muraza; Randi Purnama Putra; Remon Lapisa; Krismadinata Krismadinata; Rahadian Zainul; Asnil Asnil; Muji Setiyo; Sri Rizki Putri Primandari
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7807

Abstract

Compressed natural gas (CNG) is a popular alternative fuel because of its more environmentally friendly properties than fossil fuels , including applications in diesel engines. However, supplying too much compressed natural gas fuel causes poor engine performance and emissions due to a decrease in the air-fuel ratio on the dual-fuel engine. The addition of air using electric superchargers was done to return the air-fuel ratio to ideal conditions. Lambda value (λ) was variation under low load (1.52 to 2.71), medium load (1.18 to 2.17), and high load (0.94 to 2.17) on a CNG-diesel dual fuel engine. The addition of pure air in each load can increase combustion stability in certain lambda, which was indicated by an increase in thermal efficiency, heat release rate, and a decrease in ignition delay, combustion duration, hydrocarbon, and carbon monoxide emissions.
Mitigation of Porosity and Residual Stress on Car Body Aluminum Alloy Vibration Welding: A Systematic Literature Review Saifudin Saifudin; Nurul Muhayat; Eko Surojo; Yupiter HP Manurung; Triyono Triyono
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7965

Abstract

Fatigue resistance is influenced by porosity and residual stress in welded joints. Fatigue failure in some means of transportation is caused by the inability to withstand the load received from the car body and passengers while operating. This study uses a systematic literature review (SLR) method to identify the effect of vibration welding on porosity and residual stress. Vibration can reduce the empty cavity (porosity) and increase the density of the weld. The ultrasonic vibration spot resistance (UVSR) method with 20 kHz on AA6082 is able to reduce residual stress up to 53% and is effective for homogenization of concentrated residual stress up to 57%.
Comparison of Various Prediction Model for Biodiesel Cetane Number using Cascade-Forward Neural Network Sri Mumpuni Ngesti Rahaju; April Lia Hananto; Permana Andi Paristiawan; Abdullahi Tanko Mohammed; Anthony Chukwunonso Opia; Muhammad Idris
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7050

Abstract

Cetane number (CN) is one of the important fuel properties of diesel fuels. It is a measurement of the ignition quality of diesel fuel. Numerous studies have been published to predict the CN of biodiesels. More recently, the utilization of soft computing methods such as artificial neural networks (ANN) has received considerable attention as a prediction tool. However, most studies in the use of ANN for estimating the CN of biodiesels have only used one algorithm to train a small number of datasets. This study aims to predict the CN of 63 biodiesels based on the fatty acid methyl esters (FAME) composition by developing an ANN model that was trained with 10 different algorithms. To the best of our knowledge, this is the first study to predict the CN of biodiesels using numerous ANN training algorithms utilizing sizeable datasets. Results revealed that the ANN model trained with Levenberg-Marquardt gave the highest prediction accuracy. LM algorithm successfully predicted the CN of biodiesels with the highest correlation and determination coefficient (R = 0.9615, R2 = 0.9245) as well as the lowest errors (MAD = 2.0804, RMSE = 3.1541, and MAPE = 4.2971). Hence, the Cascade neural network trained with the LM algorithm could be considered a promising alternative to the empirical correlations for predicting biodiesel’s CN.
Axial Unipolar Eddy Current Brake Performance Characteristics Against Heat Increase in Rotor Mufti Reza Aulia Putra; Dominicus Danardono Dwi Prija Tjahjana; Muhammad Nizam; Zainal Arifin; Bhre Wangsa Lenggana; Inayati Inayati
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7431

Abstract

The development of transportation technology in the automotive sector such as electric vehicles is increasingly advanced. One technology that is needed quite a lot is the development of supporting technology for electric vehicle braking. The use of regenerative braking on light electric vehicles such as 2-wheeled vehicles is not efficient because of its low weight. The use of Eddy Current Brake (ECB) can be a solution for braking support needs. This is because the ECB is a braking system that has the advantage of a lightweight design but still relies on the frictionless principle. However, in addition to its advantages, the eddy current brake is still in the early stages of its research with efficiency that still needs to be developed. In the discussion of the ECB, heat generation is one of the interesting topics to be discussed. Specifically, the study of the characteristics of the unipolar ECB axial performance on heat generation events has not yet been discussed. So this article aims to discuss these events with a simulation process and simple mathematical calculations. Design optimization is done to get the best value. As a result, the use of eddy current brakes with conductor disks using slots, can improve the performance of the ECB on the torque side and cooling side. Thus, this article is a good contribution to the sustainability of ECB research in both the general and automotive fields.
Performance of Adsorbent from Calcium Carbide Residue to Reduce Exhaust Emissions of Two-wheeler Hendry Sakke Tira; Made Wirawan; Samsul Rahman; Ekarong Sukjit; Sudirman Sudirman
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7827

Abstract

The performance of calcium carbide residue in reducing two-wheel exhaust emissions has been studied. To perform this experiment, the carbide residue was first converted into adsorbent and then mounted in the exhaust gas line. Two-wheeler used are vehicles commonly used among Indonesian motorcyclists. The test was carried out by varying the adsorbent dimensions and engine transmission. Engine emission tests and adsorbent performance investigations were performed both before and after the exhaust emissions made contact with the adsorbent. The results showed that upon direct contact with the carbide adsorbent, the emission of two-wheeled engines decreased. Carbon-based emissions were reduced significantly in the early stages of the experiment. Moreover, emissions reduction benefits are seen in all adsorbent and transmission engine configurations. The greater the adsorbent's surface area, the better the emission reduction. A significant emissions reduction is also achieved when the first engine transmission condition is applied compared to the neutral transmission. However, the adsorption efficacy declined over time in all research variations. The presence of channels and pores in the adsorbent, and the high temperature attained by the adsorbent, keep improving the adsorbent's adsorption capabilities. However, as saturation increases, the adsorbent's adsorption, and oxidation capability decline.
Experts on Resistance to Reorganization of Structure and Technologies of Urban Mobility Provision in Russia: Challenges, Reasons, Solutions and Prospects Artur I. Petrov; Dmitrii A. Zakharov; Daria A. Petrova
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7928

Abstract

In 2022 a lot has changed in the Russian transport system. Today the urban transport systems of Russian cities are staying at the bifurcation point – they are awaiting serious changes. Therefore, it was interesting to investigate expert opinions of specialists on the prospects of the development of urban mobility provision technologies in Russia and possible changes in the current structure of citizens’ transportation approaches. The paper gives results of the research of opinions of transport market specialists on the issues of the probability of the shift of the current paradigm of transport services in Tyumen (a large Russian city with a population of 828.5 thousand people) and the necessity of reorganization of the structure and technologies of urban mobility provision due to the withdrawal of foreign automakers from the Russian market. The article presents the comparison of opinions between Tyumen professionals in the transport market and ordinary Russian citizens. The main conclusion of the research considers the serious resistance of the public environment to the expected reorganization of the structure and technologies of urban mobility provision in Russia.
An Overview of Traffic Accident Investigation Using Different Techniques Shireen Ibrahim Mohammed
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7913

Abstract

One of the most important aims of incident management is the clearance of the incident scene as fast as possible. The accident Investigation provides physical evidence at the accident site for the investigators. This physical evidence is much more reliable than the witness's statements and they are very crucial for the incident reconstruction. The cars accidents investigation is a dangerous activity, so it should be undertaken with suitable, accurate, and fast equipment. Many law enforcement agencies in the world have used different surveying techniques for accident investigations including the coordinate method, total station, photogrammetry, laser scanner, etc. Therefore, this research has been carried out in order to introduce the benefits of using surveying techniques in traffic accident investigations, and show their impacts on evidence documentation and scene clearance. This is done by focusing on the advantages and the disadvantages of each method based on the relevant works of literature and compares between them. Although comparison result shows that the traditional method(coordinate method) is simpler and cheaper than other methods, surveying techniques methods are safer, and faster in clearing the accident scene, fewer investigators are needed, the scale can be provided directly, high accuracy measurements can be obtained, and three dimensions models can be produced. So it's worth using the surveying equipment in cars accidents investigations.
Effects of Eugenol and Cineol Compound on Diffusion Burning Rate Characteristics of Crude Coconut Oil Droplet Helen Riupassa; Suyatno Suyatno; Hendry Y. Nanlohy; Andi Sanata; Trismawati Trismawati; Rachmat Subagyo; Satworo Adiwidodo; Muhammad Akhlis Rizza; Masaki Yamaguchi; Takuya Tomidokoro; Selcuk Sarikoc
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.8150

Abstract

The burning rate of coconut oil droplets has been investigated experimentally by adding bio-additives of clove oil and eucalyptus oil. Tests were carried out with single droplets suspended on thermocouples at room atmospheric pressure, and room temperature and ignited with a hot wire. The addition of clove oil and eucalyptus oil as bio-additives into coconut oil was 100 ppm and 300 ppm, respectively. The droplet combustion method was chosen to increase the contact area between the air and fuel so that the reactivity of the fuel molecules increases. The results showed that the eugenol compounds contained in clove oil and cineol compounds in eucalyptus oil were both aromatic, and had an unsymmetrical carbon chain geometry structure. Furthermore, this factor can potentially accelerate the occurrence of effective collisions between fuel molecules. Therefore the fuel is combustible, as evidenced by the increased burning rate, where the results show that without bio-additives, the burning rate of crude coconut oil (CCO) is about 0.7 seconds. These results are 0.15 to 0.2 seconds slower than CCO with bio-additive, which is around 0.55 to 0.6 seconds. Moreover, from the observations, it was found that the highest burning rate was achieved in both bio-additives with a concentration of 300 ppm.
Transesterification of Waste Cooking Oil using CaO Catalyst Derived from Madura Limestone for Biodiesel Production and Its Application in Diesel Engine Abdul Hamid; Amin Jakfar; Sirly Bifadilatur Romaniyah; Ike Dayi Febriana; Mohammad Abdullah; Zeni Rahmawati; Didik Prasetyoko
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7879

Abstract

In this study, we report biodiesel production from waste cooking oil using CaO catalyst derived from Madura limestone through a transesterification reaction. Many limestone quarries in Madura can be used as heterogeneous catalysts because they are cheap, easy to separate, and have high basicity. Conversion of limestone into CaO catalyst through calcination at 900°C for 3 hours. The CaO catalyst formed was characterized using X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), and Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX) instruments. Biodiesel formed through the transesterification reaction was analyzed using GC-MS. Furthermore, biodiesel blends from waste cooking oil and pure diesel were prepared in volume percentages (B-10, B-20, B-30, B-40, and B-100) for testing on diesel engine performance. The results of testing the highest torque and brake horsepower (BHP) were obtained on pure diesel fuel (S-100) at 2.49 Nm and 381.12 watts, respectively. The lowest fuel consumption at 1500 rpm is produced on the B-20 at 0.186 kg/h. Overall, the emission characteristics of carbon monoxide (CO), nitrogen oxides (NOx), and nitrogen monoxide (NO) with the lowest concentration resulted from biodiesel blends rather than pure diesel.
Feasibility Study of Biofuel Incorporated Nanoparticles as Sustainable IC Engine Fuel: Opportunities and Challenges - An overview Abdullahi Tanko Mohammed; Mohd Farid Muhamad Said; Norazila Othman; Anthony Chukwunonso Opia; Ibham Veza
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7846

Abstract

The advent of biofuel as a fossil petroleum substitute has been a revolutionary concept in the realm of combustion, but it lacks some qualities that, if addressed, could improve physio-chemical properties and promote energy sustainability. Recently, introducing nanoparticles (NPs) as an additive in fuel for combustion engines has become an effective practice particularly in the automobile industry, to optimize combustion efficiency and minimize emissions. Previous researchers discovered that adding NPs into biodiesel fuel improved overall engine operation performance. Thus, the objective of the research is to summarize existing research findings on nanoparticles effects on fuel properties and engine performance. The paper investigates biofuels, bio-fuel generation classifications, nano-fuel stability, performance, and limitations, as well as current research on the influence of NPs on combustion fuel properties and engine efficiency. Prior to this, researchers have discovered that employing NPs with appropriate additives and concentrations with optimal solubility significantly reduced emissions. In comparison to basic biofuel, adding CeO2 NPs to biofuel boosted brake thermal efficiency (BTE) for low and high operation by 4.1 and 12.02%, respectively. Carbon II Oxide and unburnt hydrocarbon emissions were reduced by 16.13 and 17.59%, respectively, in comparison to pure biofuel under C20-D80 + CeO2 20 ppm. However, due to the biofuel's oxygen concentration, CO2 and NOx emission reductions were not as significant. The findings indicate that utilizing a single bio-fuel generates minimal effective power, yet by incorporating nanoparticles optimizes the operation. Furthermore, future direction of the related work will be discussed particularly on the potential benefits of incorporating NPs in fuel.

Page 11 of 14 | Total Record : 134