Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Renewable Energy Development

Bioconversion of Industrial Cassava Solid Waste (Onggok) to Bioethanol Using a Saccharification and Fermentation process Soeprijanto, Soeprijanto; Qomariyah, Lailatul; Hamzah, Afan; Altway, Saidah
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41332

Abstract

Cassava solid waste (Onggok) is a by-product of the starch industry containing a lot of fiber, especially cellulose and hemicellulose. It has the potential to be converted to bioethanol. This work aimed to evaluate the effect of feedstocks ratio for the optimal bioethanol production via enzymatic and acidic hydrolysis process in a batch fermentation process. The effect of alpha-amylase and glucoamylase activities was studied. The sulfuric acid concentrations in the hydrolysis process in converting cassava into reducing sugar were also investigated. The reducing sugar was then fermented to produce ethanol. Enzymatic and chemical hydrolysis was carried out with the ratio of onggok(g)/water(L), 50/1, 75/1, and 100/1 (w/v). In the enzymatic hydrolysis, 22.5, 45, and 67.5 KNU (Kilo Novo alpha-amylase Unit) for liquefaction; and 65, 130, and 195 GAU (Glucoamylase Unit) for saccharification, respectively of enzymes were applied. The liquefaction was carried out at 90-100⁰C for 2 hours. The saccharification was executed at 65 ⁰C for 4 hours. Meanwhile, the acidic hydrolysis operating condition was at 90-100 ⁰C for 3 hours. The fermentation was performed at pH 4.5 for 3 days. Fourier Transform Infra-Red (FTIR) analysis was conducted to evaluate the hydrolysis process. The highest ethanol was yielded in the fermentation at 8.89% with the ratio of onggok to water 100:1, 67.5 KNU of alpha-amylase, and 195 GAU of glucoamylase. Ethanol was further purified utilizing fractional distillation. The final ethanol concentration was at 93-94%.
Co-Authors Abdul Hafid Abubakar Tuhuloula Achmad Roesyadi Adi Soeprijanto Aditya Akhmad Sony Afan Hamzah, Afan Afri Dwijatmiko Aisyah Alifatul Altway, Saidah Anggraheny, Nurul Annasit Annasit Atha Pahlevi Ayu Larasati Azka Afuza Bayu Yusuf Budhikarjono, Kuswandi Kusno Dwi Arimbi Wardaningrum Eldira Nindri Wena Endah Prasetyo Rini Eriska Wahyu Kusuma Erlinda Ningsih, Erlinda Fadillatul Taufany Fadlilatul Taufany Faris Adrian Firsta Hardiyanto Gissa Navira Sevie Haqqyana Haqqyana Harahap, A. H. Hendi Riesta Mulya Istiyanie, Dewi Istiyanie, Dewi Junety Monde Juwari Juwari K Kusnaryo K Kuswandi Karnila Willard Koatlely Serpara Kusnarjo Kusnarjo Kuswandi Kuswandi Kuswandi Kuswandi Kuswandi Kuswandi Lailatul Qadariyah Lailatul Qomariyah, Lailatul Lily Pudjiastuti, Lily Ling Ling M Rachimoellah M Rachimoellah Mahfud Mahfud Mahfud Mahfud Margono Margono Medya Ayunda Fitri Merisa Veronika Suparto Meydita, A. D. Miftah Imam Maarif Mochamad Sidiq Muhammad Alraedi Syukharial Muhammad Anshorulloh Mukhlish Muhammad Fadlan Minallah Muhammad Iqbal Musfil AS Nabila Farras Balqis Nadhifa Auria Andini Nonot Soewarno Nora Amelia Novitrie Novitrie, Nora Amelia Nuniek Hendrianie Nur Aini Nadhifah Nur Ihda Farihatin Nisa Nur Ihda Farikhatin Nisa Nur Ihda Farikhatin Nisa Nurkhamidah, Siti Palupi, A. E. Prapti Ira Kumala Sari R. Darmawan Darmawan Rachmaniah, Orchidea Ragilia Rahma Maulidia Renanto Handogo Rendra Panca Anugraha Ruben Leonardo Panjaitan Salasa Ariq Sungkono Samuel Sembiring Siti Machmudah Siti Nurchamidah Siti Nurkamidah Siti Zullaikah Sri Rachmania Juliastuti Sugeng Winardi Suhadi Suhadi Suhadi Suprapto Suprapto Suprapto Suprapto Surya Rachmadani Susianto S Susianto Susianto Susianto Susianto Tantular Nurtono Tri Widjaja Tri Widjaja Trisna Kumala Dhaniswara W Widiyastuti Wahyu Adinda Larasati Widiyastuti Winardi, S. Winardi, Sugeng Wulansari, Dessy Yeni Rahmawati, Yeni Yosita Dyah Anindita Yunita D Indrasari Zulfahmi Hawali