Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Teknik Kimia Indonesia

Simulasi absorpsi multikomponen gas dalam larutan K2CO3 dengan promoter MDEA pada packed column Ningsih, Erlinda; Pudjiastuti, Lily; Wulansari, Dessy; Anggraheny, Nurul; Altway, Ali; Budhikarjono, Kuswandi Kusno
Jurnal Teknik Kimia Indonesia Vol 11, No 1 (2012)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2012.11.1.3

Abstract

Simulation of multi-component gas absorption in the K2CO3 solution with promoter MDEA in packed column This research aims to study theoretically the performance of packed column to absorb CO2 and H2S from acid gas using MDEA promoted K2CO3 solution by considering solubility of other gases. Performance is expressed as CO2 recovery percentage. Research was carried out by developing simulation program of gases absorption with chemical reaction in packed column under isotherm condition. Prediction results were validated with petrochemical plant data. The simulation program can predict concentration distribution of dissolved gases and reactants in liquid phase at packed column and also the percentage of CO2 and H2S recovery. Results show that CO2 and H2S recovery increase with the increasing pressure and liquid flow rate. The study also depicts presence of an optimum temperature where CO2 recovery increases with increasing temperature below optimum temperature and decrease with increasing temperature above optimum temperature. The absorption rate increase or decrease with increasing temperature depending on relative effect of temperature on reaction rate, gas diffusivity and solubility. For CO2 absorption into MDEA promoted 30% K2CO3 solution at packed column 3 m in diameter, and 30 m in height filled with 7 cm IMPT packing, the highest CO2 removal efficiency is 99.947% on 100 oC, 32 atm, liquid flow rate of 5900 m3/hr, and gas flow rate of 308 kNm3/hr. Keywords: reactive absorption, isothermal, multi-component, promoter, two-film modelAbstrakPenelitian ini bertujuan untuk mempelajari secara teoritis kinerja packed column untuk absorpsi CO2 dan H2S dari gas asam dengan larutan K2CO3 dan promotor MDEA dengan memperhatikan kelarutan gas-gas yang lain, yang dinyatakan dengan %-recovery CO2. Penelitian ini dilaksanakan dengan membuat program simulasi untuk absorpsi gas CO2 disertai reaksi kimia dalam kondisi isothermal. Hasil prediksi simulasi ini divalidasi dengan data lapangan. Dengan menggunakan model packed column ini, diperoleh distribusi konsentrasi gas-gas terlarut, distribusi konsentrasi reaktan dalam fasa cair dalam kolom absorber dan prediksi %-recovery CO2 dan H2S. Hasil penelitian menunjukkan bahwa semakin tinggi tekanan dan laju alir absorben %-penghilangan CO2 dan H2S semakin besar. Hasil penelitian menunjukkan adanya suhu optimum. Di bawah suhu optimum kenaikan suhu menyebabkan kenaikan %-penghilangan sedangkan di atas suhu optimum kenaikan suhu menurunkan %-penghilangan. Laju absorpsi meningkat tergantung pada pengaruh relatif temperatur pada konstanta kecepatan reaksi, difusivitas dan kelarutan gas yang terserap. Untuk absorpsi gas CO2 kedalam larutan K2CO3 30% dengan promotor MDEA pada packed column dengan diameter 3 m dan tinggi 30 m yang diisi dengan packing IMPT 7 cm diperoleh penghilangan CO2 tertinggi 99,947% pada kondisi laju alir larutan 5900 m3/jam, temperatur 100 oC, laju alir gas 308 kNm3/jam serta tekanan 32 atm.Kata kunci: absorpsi reaktif, isothermal, multikomponen, promoter, model dua film.
Kajian ulang transfer massa disertai reaksi kimia pada absorpsi reaktif gas CO2 pada packed column Ali Altway; S Susianto; K Kuswandi; K Kusnaryo
Jurnal Teknik Kimia Indonesia Vol 7, No 3 (2008)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2008.7.3.2

Abstract

This article reviewed researches have been carried out concerning simulation of enhancement factor for absorption accompanied by second order chemical reaction under non-isothermal condition and modeling of packed column for CO2 absorption in K2CO3 solution. The value of enhancement factor was predicted using eddy diffusivity model (King model) for describing interface mass transfer phenomena. System of differential equations developed in this modeling was solved with Orthogonal Collocation method. The value of E predicted from this research agrees very well with that predicted using Penetration model (Higbie model) by Vas Bhat (1997). The researches concerning packed column modeling was carried out experimentally and theoretically. Experimental works were carried out to validate theoretical prediction. Material studied in this research was CO2 –air mixture and potassium carbonate solution. Potassium carbonate solution was fed into top of the column and the solution was contacted counter currently with rising CO2-air mixture stream. The liquid leaving the column was analyzed by titration. Theoretical studies were carried out by developing microscopic mass and energy balance model on the packed column. The resulted system of first order differential equations were solved using Forth order Runge Kutta method. The solution of this model requires information concerning rate of gas-liquid interface mass transfer where King model was used in this study. Mass transfer, CO2, solubility, kinetics, and reaction equilibrium data required in this theoretical study were obtained from literatures (Danckwertz, 1970; Kohl and Riesenfeld,1985; and Treyball, 1981). In this research, the effect of absorbent flow rate and the concentration of  K2CO3 in the inlet absorbent on percent recovery of CO2  gas was studied.Deviation between simulation prediction results and experimental data was below  10%  for absorbent flow rate of 3 to  5 liter/menit and for absorbent flow rate of 5 to  7 liter/ menit the deviation was between 10 and 30%. Key words: mass transfer, eddy diffusivity, absorption, non-isotermal, packed column AbstrakArtikel ini mengkaji ulang penelitian-penelitian yang telah dilakukan mengenai simulasi enhancement factor absorpsi disertai reaksi reversible order dua kondisi non-isotermal dan pemodelan packed column untuk absorpsi gas CO2 kedalam larutan K2CO3 pada packed column. Harga enhancement factor diprediksi dengan menggunakan model eddy diffusivity (model King untuk perpindahan massa antar fasanya). Sistim persamaan diferensial yang dibentuk dari pemodelan ini diselesaikan dengan metoda Kolokasdi Ortogonal. Hasil prediksi harga E dari penelitian ini sangat mendekati hasil prediksi menggunakan model Penetrasi oleh Vas Bhat (1997). Penelitian pemodelan packed column dilaksanakan secara eksperimen dan simulasi. Penelitian secara eksperimen dilaksanakan untuk validasi hasil simulasi. Bahan yang digunakan adalah campuran CO2 dan udara serta larutan potasium karbonat. Larutan potasium karbonat dialirkan kedalam packed column dari atas dan dikontakkan secara berlawanan arah dengan aliran campuran CO2-udara dari bawah. Cairan keluar kolom dianalisa dengan titrasi. Sedangkan percobaan simulasi dilaksanakan dengan mengembangkan model neraca massa dan energy mikroskopik pada kolom. Sistim persamaan diferensial order satu yang dihasilkan diselesaikan dengan metoda Rung Kutta order empat. Solusi model ini memerlukan informasi mengenai laju transfer massa antar fasa gas-liquid yang dalam hal ini menggunakan model King. Data kelarutan CO2, data perpindahan massa, data kinetika dan kesetimbangan reaksi yang diperlukan pada penelitian ini diperoleh dari literatur (Danckwertz, 1970; Kohl and Riesenfeld,1985; dan Treyball, 1981). Pada penelitian ini dipelajari pengaruh laju alir absorben dan konsentrasi K2CO3 dalam larutan absorben masuk terhadap persen penyisihan gas CO2. Deviasi antara hasil prediksi simulasi dan data percobaan pada penelitian ini dibawah 10% untuk laju alir absorben dari 3 sampai dengan 5 liter/menit dan untuk laju alir 5 sampai dengan 7 liter menit deviasi nya antara 10-30%.Kata kunci: perpindahan massa, eddy diffusivity, absorpsi, non-isotermal, packed column
Comparison of several models to assess the effect of micromixing phenomena on the yield of complex chemical reactions in stirred tank Ali Altway; Sugeng Winardi; M Rachimoellah
Jurnal Teknik Kimia Indonesia Vol 3, No 2 (2004)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2004.3.2.3

Abstract

The effect of micromixing phenomena on the course of chemical reactions occuring in continuous stirred tank reactor was very important especially for fast reactions case. Previous workers have analyzed the effect using several models. The aim of this work is to make comparative study of several models to asses the effect of micro mixing phenomena on the course of two competitive fast parallel chemical reactions carried out in continuous stirred tank reactors. The reaction system investigated was the same as that studied by Baldyga (2001), neutralization of sodium hydroxide and hydrolysis of ethyl chloroacetate. Two closure approaches based on CFD available in FLUENT, Generalized Finite Rate Formulation (GFRF) and Probability Density Function (PDF), and a mechanistic model, Packet Diffusion Model, have been compared in assessing the effect of turbulent mixing on the yield of reaction. Baldyga's experimental data have been used to validate the computational results. The study concludes that a simple mechanistic model, Packet Diffusion Model, can predict fairly well (comparable in accuracy to the more sophisticated model such as PDF and GFRF model) the effect of micromixing phenomena on the course of parallel competitive chemical reactions in the continuous stirred tank reactor.Key Words : Micromixing, Continuous Stirred Tank Reactor, C.FD, PDM, GFRF, PDFAbstrakPengaruh fenomena micromixing terhadap berlangsungnya reaksi kimia yang terjadi di dalam reaktor kimia tangki berpengaduk menjadi sangat penting terutama untuk kasus reaksi-reaksi cepat. Beberapa penelitian terdahulu telah menganalisa secara teoritis pengaruh fenomena ini terhadap kinerja reaktor tangki teraduk menggunakan beberapa model. Tujuan penelitian ini adalah untuk membandingkan beberapa model untuk menganalisa pengaruh fenomena micromixing pada jalannya dua reaksi paralel kompetitif cepat yang terjadi di dalam reaktor alir tangki teraduk menggunakan beberapa model. Sistem reaktor yang diselidiki adalah sama dengan yang dipelajari Baldyga (2001), yaitu reaksi netralisasi sodium hidroksida dan hidrolisa ethyl chloroacetat. Dua pendekatan closure berbasis CFD yang tersedia pada FLUENT, yaitu Generalized Finite Rate Formulation (GFRF) dan Probability Density Function (PDF), dan suatu model mekanistik, yaitu Packet Diffusion Model, telah dibandingkan dalam menganalisa pengaruh pencampuran turbulen pada yield reaksi. Data eksperimen Baldyga telah digunakan untuk mengvalidasi hasil-hasil perhitungan. Penelitian ini menyimpulkan bahwa model mekanistik yang sederhana, yaitu Packet Diffusion Model, dapat memprediksi cukup baik, sebanding dari segi ketelitiannya dengan model berbasis CFD yang lebih rumit, pengaruh fenomena micromixing terhadap jalannya dua reaksi paralel kompetitif di dalam reaktor tangki teraduk.Kata Kunci : Micromixing, Reaktor Alir Tangki Teraduk, CFD, PDM, GFRF, PDF
Simulasi pengaruh pencampuran pada reaksi parallel dalam reaktor alir tangki berpengaduk Ling Ling; Ali Altway; Sugeng Winardi
Jurnal Teknik Kimia Indonesia Vol 3, No 1 (2004)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2004.3.1.7

Abstract

The performance of continuousstirred tank reactor was affected by both macrommng and micromixing phenomena. The effect of micromixing becomes very importantfor fast chemical rections occuring in the reactor. However, there is not enough information about the effect on the reactor performance. Previous workers have analyzed the effect of micromixing phenomena using several models. However these models can not simulate the effect of some geometries aspects of the continuous stirred tank reactor such as feed and outflow position. There for the aim of this work is to study theoretically the effect of reactor geometry on the course of two competitive fast parallel chemical reactions. The liquid height in the tank equal with the diameter. The reaction system investigated was the same as that studied by Baldyga (2001), neutralization of sodium hydroxide and hydrolysis oh ethyl chloroacetate. This work studied the effect of impeller rotation speed, mean residence time, the position of inlet  and outlet pipe, and the impeller type. The simulation was carried out using Generalized Finite Rate Formulation (GFRF) for reactive hydrodynamic system, Standard turbulent model Probability Density Function (PDF), and a mechanistic model, Packet Diffusion Model, and MRF approach to handle impeller problem. CFD commercial code FLUENT 6.0 has been used to do the simulation work. The simulation results showed that the reaction yield was affected in complicated manner by several factors such as: energy dissipation rate, pipe inlet and outlet, flow pattern, reaction zone and mean residence time. Keywords: Micromixing, Continuous Stirred Tank Reactor, CFD, Competitive Parallel Reactions AbstrakKinerja reaktor kimia tangki berpengaduk dipengaruhi baik oleh fenomena macromixing maupun micromixing. Pengaruh fenomena micromixing menjadi sangat penting untuk reaksi-reaksi cepat yang terjadi di dalam reaktor. Belum banyak informasi yang tersedia mengenai pengaruh fenomena micromixing terhadap kinerja reaktor. Beberapa penelitian terdahulu telah menganalisa secara teoritis pengaruh fenomena ini terhadap kinerja reaktor tangki teraduk dengan menggunakan beberapa model. Model - model ini belum dapat melibatkan pengaruh beberapa aspek geometri, seperti posisi aliran umpan dan posisi aliran keluar, terhadap kinerja reaktor tangki teraduk yang dioprasikan secara kontinyu. Penelitian ini bertujuan untuk mempelajari pengaruh geometri reaktor terhadap distribusi dan konversi produk dari reaksi parallel melalui teknik simulasi. Sistem yang digunakan adalah  tangki silindris berdasar datar yang dilengkapi dengan 4 buah bajjle dengan ukuran T (diameter tangki) = 0,3 m dan H (tinggi cairan) = T. Reaksi parallel kompetitif yang dipelajari adalah reaksifase cair antara asam klorida dengan natrium hidroksida dan reaksi antara elit kloroasetat dengan natrium hidroksida. Reaksi pertama jauh lebih cepat dari reaksi kedua. Sedangkan variabel percobaan yang dipelajari meliputi kecepatan putar impeller, waktu tinggal, letak masukan reaktor, letak keluaran reaktor danjenis impeller. Simulasi modeljisik yang terlibat adalah model umum formula reaksi kimia dan model aliran turbulen k-0 standar. Hasil simulasi menunjukkan bahwa selektivitas reaksi dipengaruhi secara kompleks oleh beberapa faktor yaitu energi dissipasi, posisi masukan dan keluaran rekator, pola aliran, luas daerah reaksi serta lamanya waktu tinggal. Kata Kunci: Micromixing, Reaktor Alir Tangki Berpengaduk, CFD, dan Reaksi Parallel KompetitifTheperformanceofcontinuousstirredtankreactorwasaffectedbybothmacrommngandmicromixingphenomena.Theeffectofmicromixingbecomesveryimportantforfastchemicalrections occuringinthereactor.However,thereisnotenoughinformationabouttheeffectonthereactor performance.Previousworkershaveanalyzedtheeffectofmicromixingphenomenausingseveralmodels.Howeverthesemodelscannotsimulatetheeffectofsomegeometriesaspectsofthecontinuousstirredtankreactorsuchasfeedandoutflowposition.Therefortheaimofthisworkistostudytheoreticallytheeffectofreactorgeometryonthecourseoftwocompetitivefastparallelchemicalreactions.Theliquidheightinthetankequalwiththediameter.ThereactionsysteminvestigatedwasthesameasthatstudiedbyBaldyga(2001),neutralizationofsodiumhydroxide andhydrolysisohethylchloroacetate.Thisworkstudiedtheeffectofimpellerrotationspeed,meanresidencetime,thepositionof inlet  andoutletpipe,andtheimpellertype.ThesimulationwascarriedoutusingGeneralized FiniteRateFormulation(GFRF)forreactivehydrodynamicsystem,.... StandardturbulentmodelProbabilityDensityFunction(PDF),andamechanisticmodel,PacketDiffusion Model,andMRFapproachtohandleimpellerproblem.CFDcommercialcodeFLUENT6.0hasbeenusedtodothesimulationwork.Thesimulationresultsshowedthatthereactionyieldwasaffectedincomplicatedmannerbyseveralfactorssuchas:energydissipationrate,pipeinletandoutlet,flowpattern,reactionzoneandmeanresidencetime. Keywords:Micromixing,ContinuousStirredTankReactor,CFD,CompetitiveParallelReactions
Study micromixing pada tangki teraduk secara kontinyu Ali Altway; W Widiyastuti; M Rachimoellah; Sugeng Winardi
Jurnal Teknik Kimia Indonesia Vol 3, No 1 (2004)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2004.3.1.3

Abstract

The aim of this work is to study the influence of micromixing on product distribution for parallel reaction systems in an agitated tank. The understanding of micromixing is needed besides macromixing to obtain the optimum process. The neutralization reaction of NaH2BO3 and oxidation-reduction reaction between lodide-lodate to generate iodine are selected to perform parallel reaction systems. These reactions were conducted in a flat bottom cylindrical tank 0.2 m in diameter (T) at room temperature (30oC) agitated by six blades fan turbine having diameter (Da)=1/3T and impeller width (W)=1/4T. The impeller clearance was I/3H. The height of liquid in the tank is equal to its diameter (H=T). This tank was operated as continuous reactor type. The inf1uences of impeller speed, residence time and feed position were analyzed. Segregation number and the yield of iodine generation determine the micromixing degree and the performance of reactor respectively. The impeller rotation speed was varied 100-300 rpm. The residence time varied 6.01, 4.005 and 3.005 minutes. The feed position was varied on [r"=r/D, z'=z/H] cylindrical coordinate as follows [1.4, 180o, 0.23], [1.4, 180o, 0.33] and [2.4, 180o, 0.92] which represent bulk swept impeller and near surface regions respectively. By increasing the impeller rotation speed and residence time, the iodine yield decrease.The iodine yield is proportional to segregation number. The segregation number Leads to micromixing degree which higher micromixing degree corresponds to the iodine yield decreasing. The impeller swept position gives the smallest the iodine yield compared to others. Keywords: Micromixing, Yield, Segregasion Number.AbstrakPenelitian ini bertujuan untuk mempelajari pengaruh micromixing pada distribusi produk untuk reaksi paralel dalam sistem tangki teraduk. Pemahaman tentang micromixing dalam suatu sistem diperlukan disamping macromixing untuk mendapatkan proses yang optimum. Pada penelitian ini reaksi paralel ini diwakili oleh reaksi netralisasi NaH2BO3 dan reaksi oksidasi-reduksi Iodide-lodate yang menghasilkan lodin. Reaktor beroperasi kontinyu pada suhu kamar (30oC) berupa tangki silinder berdasar datar berdiameter (T)=0.2 m yang diaduk dengan fan turbin enam blade berdiameter (Da)=1/3T dan lebar impeller (W)=1/4T yang dipasang 1/3H dari dasar. Tinggi cairan sama dengan diameter tangki (H=T). Pengaruh kecepatan putar impeller, waktu tinggal dan posisi umpan dianalisa. Bilangan segregasi dihitung untuk menentukan derajat micromixing dan menghitung yield pembentukan iodin untuk menentukan unjuk kerja reaktor. Kecepatan putar impeller divariasi 100-300 rpm. Waktu tinggal divariasikan 6.01, 4.005 and 3.005 menit. Posisi umpan [r'=r/D, z'=z/H] yang merupakan koordinat silinder divariasikan [1.4, 180o, 0.23], [1.4, 180o, 0.33] and [2.4, 180o, 0.92] yang menyatakan masing-masing daerah bulk bawah, sapuan impeller dan dekat permukaan. Semakin tinggi kecepatan putar impeller dan semakin lama waktu tinggal, yield iodin yang dihasilkan semakin keci1. Yield iodin yang dihasilkan sebanding dengan bilangan segregasi. Bilangan segregasi menunjukkan tingkat micromixing dimana semakin besar tingkat micromixing semakin kecil yield iodin yang dihasilkan. Posisi umpan yang memberikan yield iodin yang terkecil adalah pada daerah sapuan impeller. Kata Kunci: Micromixing, Yield, Bilangan Segregasi.
Co-Authors Abdul Hafid Abubakar Tuhuloula Achmad Roesyadi Adi Soeprijanto Aditya Akhmad Sony Afan Hamzah, Afan Afri Dwijatmiko Aisyah Alifatul Altway, Saidah Anggraheny, Nurul Annasit Annasit Atha Pahlevi Ayu Larasati Azka Afuza Bayu Yusuf Budhikarjono, Kuswandi Kusno Dwi Arimbi Wardaningrum Eldira Nindri Wena Endah Prasetyo Rini Eriska Wahyu Kusuma Erlinda Ningsih, Erlinda Fadillatul Taufany Fadlilatul Taufany Faris Adrian Firsta Hardiyanto Gissa Navira Sevie Haqqyana Haqqyana Harahap, A. H. Hendi Riesta Mulya Istiyanie, Dewi Istiyanie, Dewi Junety Monde Juwari Juwari K Kusnaryo K Kuswandi Karnila Willard Koatlely Serpara Kusnarjo Kusnarjo Kuswandi Kuswandi Kuswandi Kuswandi Kuswandi Kuswandi Lailatul Qadariyah Lailatul Qomariyah, Lailatul Lily Pudjiastuti, Lily Ling Ling M Rachimoellah M Rachimoellah Mahfud Mahfud Mahfud Mahfud Margono Margono Medya Ayunda Fitri Merisa Veronika Suparto Meydita, A. D. Miftah Imam Maarif Mochamad Sidiq Muhammad Alraedi Syukharial Muhammad Anshorulloh Mukhlish Muhammad Fadlan Minallah Muhammad Iqbal Musfil AS Nabila Farras Balqis Nadhifa Auria Andini Nonot Soewarno Nora Amelia Novitrie Novitrie, Nora Amelia Nuniek Hendrianie Nur Aini Nadhifah Nur Ihda Farihatin Nisa Nur Ihda Farikhatin Nisa Nur Ihda Farikhatin Nisa Nurkhamidah, Siti Palupi, A. E. Prapti Ira Kumala Sari R. Darmawan Darmawan Rachmaniah, Orchidea Ragilia Rahma Maulidia Renanto Handogo Rendra Panca Anugraha Ruben Leonardo Panjaitan Salasa Ariq Sungkono Samuel Sembiring Siti Machmudah Siti Nurchamidah Siti Nurkamidah Siti Zullaikah Sri Rachmania Juliastuti Sugeng Winardi Suhadi Suhadi Suhadi Suprapto Suprapto Suprapto Suprapto Surya Rachmadani Susianto S Susianto Susianto Susianto Susianto Tantular Nurtono Tri Widjaja Tri Widjaja Trisna Kumala Dhaniswara W Widiyastuti Wahyu Adinda Larasati Widiyastuti Winardi, S. Winardi, Sugeng Wulansari, Dessy Yeni Rahmawati, Yeni Yosita Dyah Anindita Yunita D Indrasari Zulfahmi Hawali