Claim Missing Document
Check
Articles

Found 15 Documents
Search

Sistem Proteksi Arus Lebih pada Proses Pengisian Baterai Menggunakan Buck Converter Metode Constant Voltage Dicky Satria Nanda Lestyanto; Sutedjo Sutedjo; Novie Ayub Windarko; Ahmad Firyal Adila
Jurnal Teknik Elektro dan Komputasi (ELKOM) Vol 5, No 2 (2023): ELKOM
Publisher : Universitas Muhammadiyah Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32528/elkom.v5i2.10143

Abstract

Sistem proteksi arus lebih pada suatu rangkaian listrik sangat diperlukan untuk menghindari kerusakan pada komponen yang diakibatkan oleh lonjakan arus yang tinggi (overcurrent). Salah satu penyebab terjadinya arus lebih adalah terjadinya hubung singkat (short circuit). Apabila terjadi hubung singkat pada sistem, maka tegangan pada buck converter akan menurun drastis dan arus akan mengalami lonjakan hingga melampaui arus nominal sistem. Pada umumnya untuk melakukan proteksi arus lebih digunakan MCB (Miniature Circuit Breaker). Namun pada praktiknya penggunaan MCB harus mengaktifkan secara manual setelah melakukan proteksi arus lebih. Oleh karena itu, komponen relay digunakan untuk membatasi arus dan melakukan proteksi terhadap arus lebih pada sistem.  Pada penelitian ini digunakan panel surya 100WP, baterai lead-acid 12V/20Ah, dan buck converter. Deteksi arus lebih didapatkan dari hasil pembacaan arus keluaran buck converter. Saat terminal keluaran tegangan buck converter dihubungkan singkat dalam keadaan berbeban atau tidak berbeban dapat menyebabkan terjadi arus lebih pada sistem, relay memutus rangkaian sebagai aksi proteksi terhadap arus lebih. Sistem pengisian baterai dengan menggunakan kontrol PI (Proportional Integral) dapat menstabilkan tegangan keluaran buck converter sebesar 14,38 Volt. Sistem kontrol yang diimplementasikan terbukti dapat melakukan pengisian baterai dengan baik.
Manajemen dan Pemantauan Energi Motor BLDC pada Mobil Listrik Berbasis IoT Aditya Ilham Pradana; Eka Prasetyono; Ony Asrarul Qudsi; Era Purwanto; Sutedjo Sutedjo; Syechu Dwitya Nugroho; Lucky Pradigta S.R.; Diah Septi Y.
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 7 No 4: November 2018
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1103.969 KB)

Abstract

This paper presents a system design as a management and monitoring of energy consumption in BLDC motors that are applied to electric vehicle. Energy consumption settings are applied using the Pulse Amplitude Modulation principle by adjusting the input voltage on a BLDC motor. This setting uses a DC-DC converter with Buck Converter topology. This converter is designed with a maximum current capability of 20 A and an output voltage that varies from a range of 24 V - 56 V. To ensure the output voltage is always on the set point, the duty cycle of Buck Converter is set using proportional controls. The regulated energy consumption is monitored with modern technology, namely by using low energy components and with the IoT Devices principle. Based on the results obtained, this method can reduce energy consumption up to 36%, as well as monitoring stable energy consumption at reading sensor.
Distribution Transformer Secondary Bushing Temperature Detection Device using Feed Forward Neural Network GALIH FEBRYANTA ASWA YUDHISTIRA; SUTEDJO SUTEDJO; RENNY RAKHMAWATI
Jurnal Elkomika Vol 11, No 4 (2023): ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektr
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v11i4.983

Abstract

ABSTRAKTransformator distribusi mengubah tegangan listrik tinggi menjadi rendah. Pada sekunder transformator, tegangan dan arus listrik cukup besar sehingga terjadi disipasi panas berlebihan karena timbulnya tahanan listrik pada titik koneksi sekunder transformator dengan kabel keluaran. Hal ini menyebabkan unbalance current dan overheat sehingga terjadi lost contact yang mengganggu pasokan listrik serta drop tegangan. Sayangnya pemeriksaan di lapangan dilakukan tiap enam bulan sekali padahal lost contact dapat terjadi sewaktu-waktu. Sehingga kami mengusulkan pengembangan alat deteksi overheat real-time pada bushing sekunder menggunakan metode klasifikasi suhu berbasis Feed Forward Neural Network (FFNN) yang dilengkapi dengan Internet of Things. FFNN berhasil mengklasifikasikan suhu dengan nilai 0 untuk suhu 30˚C-50˚C, nilai 0 untuk suhu 51˚C-90˚C yang memerlukan perbaikan, dan nilai satu untuk suhu di atas 90˚C dengan relay memutus, kemudian sistem mengirimkan notifikasi lost contact realtime. Sehingga alat ini meningkatkan keefektifan pemeriksaan dan dapat diterapkan guna mengurangi tindakan pemeriksaan secara langsung.Kata kunci: Transformator Distribusi, Lost Contact, Internet of Things, Feed Forward Neural Network ABSTRACTThe distribution transformer turns high voltage into low voltage. On the secondary transformator, the voltage and current are sufficiently large that excessive heat dissipation occurs due to the appearance of electric retention at the point of secondary connection of the transformator to the output cable. This causes current imbalance and overheating, resulting in lost contact that disrupts power supply and voltage drop. Unfortunately, field inspections are carried out every six months and lost contact can occur at any time. So we suggested developing a real-time overheat detection tool on secondary bushing using a temperature classification method based on the Feed Forward Neural Network (FFNN) equipped with the Internet of Things. With FFNN, the system successfully classifies the temperature with a value of 0 for a temperature of 30 ̊ C-50 ̊ C, a value 0 for the temperature of 51°C-90 ̊ C that requires repair, and a value 1 for a temperatur above 90 ̊ C with a relay disconnect, then the system sends a real-time lost contact notification. Thus this tool increases the effectiveness of inspection and can be applied to reduce inspection actions directly.Keywords: Distribution Transformer, Lost Contact, Internet of Things, Feed Forward Neural Network
Estimasi State of Charge pada Baterai Lead Acid menggunakan Elman Recurrent Neural Network RENNY RAKHMAWATI; SUTEDJO SUTEDJO; FITROTIN NAFISA OKTAVIANI; IRIANTO IRIANTO; DIAH SEPTI YANARATRI; AHMAD FIRYAL ADILA
Jurnal Elkomika Vol 11, No 4 (2023): ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektr
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v11i4.864

Abstract

ABSTRAKPenggunaan panel surya sebagai sumber energi terbarukan membutuhkan baterai sebagai tempat penyimpanan energi. Penggunaan baterai secara terus menerus, dapat menyebabkan pengurangan kapasitas dan penurunan performa. Untuk mengatasi permasalahan tersebut, diperlukan sistem estimasi nilai State of Charge (SOC) pada baterai yang berfungsi untuk mengontrol kondisi charge, agar performa baterai tetap optimal. Pada penelitian dikembangan suatu sistem estimasi SOC pada baterai jenis lead acid, dengan metode algoritma Elman Recurrent Neural Network (ERNN). Keunggulan yang terkait dengan metode ERNN meliputi proses iterasi menjadi lebih cepat, peningkatan kecepatan pembaruan parameter, dan pencapaian konvergensi yang lebih cepat. Hasil dari penelitian estimasi SOC pada baterai lead acid 12V, 12Ah dengan menggunakan algoritma ERNN sebesar 0.101% sedangkan dengan algoritma Feedforward Backpropagation sebesar 0.767%. Sehingga dapat disimpulkan bahwa algoritma ERNN lebih efisien dalam mengestimasi nilai SOC pada baterai lead acid.Kata kunci: Baterai, Elman Recurrent Neural Network, Panel Surya, State of Charge; Lead Acid ABSTRACTUsing solar panels as a renewable energy source requires batteries as energy storage. Continuous use of batteries can result in reduced capacity and performance degradation. Based on these problems, a State of Charge (SOC) estimation system is needed for the battery to control charge conditions so that battery performance remains optimal. In this research, a SOC estimation system was developed for lead acid battery using the Elman Recurrent Neural Network (ERNN) algorithm. The advantage of the ERNN method is that the iteration process is faster, the parameter update speed is increased, and convergence is faster. The results of the SOC estimation for a 12V, 12Ah lead acid battery using the ERNN algorithm were 0.101%, while the Feedforward Backpropagation algorithm resulted in 0.767%. The ERNN algorithm is more efficient in estimating the SOC value of a lead acid battery.Keywords: Battery, Elman Recurrent Neural Network, Solar Panel, State of Charge, Lead Acid
Desain dan Impelementasi Multilevel Inverter Tiga Tingkat Untuk Mereduksi Harmonisa Bagus Afif Nasrudin; Sutedjo Sutedjo; Endro Wahjono
Setrum : Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer Vol 12, No 2 (2023): Edisi Desember 2023
Publisher : Fakultas Teknik Elektro - Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36055/setrum.v12i2.16638

Abstract

Suplai kualitas daya listrik yang baik merupakan elemen yang sangat dibutuhkan bagi peralatan listrik. Umumnya inverter konvensional menghasilkan THD tegangan dan arus yang cukup tinggi yang mana berpengaruh pada meningkatnya rugi-rugi akibat harmonisa sehingga efisiensi yang dihasilkan semakin turun. Oleh karena itu diusulkan sebuah sistem terdiri dari baterai sebagai sumber dc yang digunakan untuk mensuplai multilevel inverter yang merupakan salah satu jenis inverter yang memiliki bentuk gelombang tegangan maupun arus yang bertingkat. Multilevel inverter dimodulasi dengan metode Alternate Phase Opposition Disposition (APOD-PWM) yang mana teknik modulasi ini membutuhkan masing-masing dari empat bentuk sinyal pembawa untuk bentuk gelombang keluaran inverter tiga tingkat dengan masing-masing sinyal pembawa digeser fasanya sebesar 120˚ dari sinyal yang berdekatan secara bergantian. Dari data hasil pengujian, multilevel inverter 3 tingkat dapat mengubah 36 VDC  menjadi 15.6 Vrms AC yang kemudian dinaikkan tegangannya oleh trafo step-up menjadi 215 Vrms AC dengan persentase error 2.2%. Keluaran dari multilevel inverter tiga tingkat setelah melalui filter dengan beban lampu pijar 400 Watt menghasilkan THD tegangan sebesar 7,4% dan THD arus sebesar 7.6%.