Articles
Rancang Bangun Aplikasi Pengelompokan dan Pemberi Rekomendasi Berita Lomba Online Menggunakan Klasifikasi Fuzzy Berbasis Kerangka Kerja Spring
Febri Fernanda;
Umi Laili Yuhana;
Diana Purwitasari
Jurnal Teknik ITS Vol 2, No 1 (2013)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (540.295 KB)
|
DOI: 10.12962/j23373539.v2i1.2736
Salah satu berita yang beredar dan banyak dibutuhkan adalah berita lomba. Pada umumnya, untuk mendapatkan berita lomba, setiap orang akan melakukan pencarian pada mesin pencari. Namun, pengguna masih harus tetap membuka halaman dan melakukan pencariannya pada masing-masing portal. Dikarenakan setiap portal mempunyai data berita lomba yang berbeda-beda, maka waktu yang diperlukan untuk mendapatkan berita lomba yang sesuai kurang efektif. Pada penelitian ini dikembangkan suatu sistem berbasis web yang secara berkala mampu memperbarui dan mengelompokkan kategori data berita lomba dari beberapa portal lomba. Pengambilan judul dan rangkuman data lomba memanfaatkan layanan Really Simple Syndication (RSS) sedangkan untuk mendapatkan konten data lomba memanfaatkan teknologi web crawler. Sistem berupa sebuah mesin pencari berita lomba dengan beberapa fungsi penyaringan. Dengan tambahan fitur pemberi rekomendasi berita berdasarkan profil pengguna dan sejarah pencarian, maka sistem ini dapat memudahkan pengguna mendapatkan berita lomba yang diinginkan secara cepat. Sistem dibangun menggunakan kerangka kerja Spring MVC agar memudahkan dalam pembangunan dan penggunaan ulang. Pengelompokan data berita lomba menggunakan metode Fuzzy Similarity K Nearest Neighbors (FSKNN) yang mampu mengelompokkan berita lomba ke dalam beberapa kategori sekaligus. Untuk membangun fitur mesin pencari dan pemberi rekomendasi berita lomba sistem memanfaatkan pustaka Lucene.
Pembentukan Tesaurus pada Cross-Lingual Text dengan Pendekatan Constraint Satisfaction Problem
Umy Rizqi;
Chastine Fatichah;
Diana Purwitasari
Jurnal Teknik ITS Vol 6, No 2 (2017)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (634.967 KB)
|
DOI: 10.12962/j23373539.v6i2.23686
Dokumen tugas akhir dan tesis sering kali disediakan dalam dua bahasa, yaitu bahasa Indonesia dan Inggris. Dalam pencarian, setiap mahasiswa memiliki kecenderungan mencari dokumen dengan menggunakan kata kunci dengan bahasa tertentu. Tujuan dari penelitian ini adalah untuk membangun cross-lingual tesaurus bahasa Indonesia dan bahasa Inggris dengan pendekatan Constraint Satisfaction Problem. Dalam penelitian ini digunakan data Tugas Akhir serta Tesis mahasiswa Institut Teknologi Sepuluh Nopember. Pada pengolahan dokumen dilakukan beberapa langkah yaitu pembentukan pararell corpus, ekstraksi kata, pembobotan kata, dan pembentukan informasi co-occurrence, yang selanjutnya dilakukan Constraint Satisfaction Problem dengan backtracking sebagai solusi pencarian. Pembobotan menggunakan TF-IDF (term frequency–inverse document frequency) Hasil dari proses pembangunan tesaurus, tesaurus yang dibentuk dengan menggunakan CSP menghasilkan precision 91,38% sedangkan tesaurus yang dibentuk tanpa menggunakan CSP menghasilkan precision 45,23%. Pencarian dokumen menggunakan tesaurus menghasilkan recall 86,67%, precision 100% dan akurasi 86,67%.
Visualisasi Similaritas Topik Penelitian dengan Pendekatan Kartografi Menggunakan Self-Organizing Maps (SOM)
Budi Pangestu;
Diana Purwitasari;
Chastine Fatichah
Jurnal Teknik ITS Vol 6, No 2 (2017)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (588.087 KB)
|
DOI: 10.12962/j23373539.v6i2.23706
Penelitian merupakan salah satu hal yang penting dalam pengembangan bidang keilmuan sehingga dinilai perlu diciptakan sebuah visualisasi Peta Keterkaitan Antar Topik Riset Penelitian, agar mampu memberikan ide dan gambaran bagi calon peneliti dari Indonesia tentang potensi Topik Penelitian yang dapat dikembangkan.Pada penelitian kali ini, akan digunakan Data Penelitian studi dari Resits.its.ac.id sebagai data input. Pemrosesan Data Mining pada data teks seringkali memiliki kendala dalam kata-kata yang terdapat pada corpus terlalu kotor atau biasa disebut stopwords, dan besarnya dimensi fitur yang didapat dari data teks sangat besar. Berdasarkan hasil uji coba, dapat disimpulkan bahwa ekstraksi fitur dan Teknik cluster yang digunakan sudah tepat divalidasi dengan Silhouette Score sebesar 0.5215, dan Cophenet Correlation Coefficient sebsar 0.977. Uji coba diatas menunjukkan bahwa K-means Clustering yang digunakan menghasilkan Cluster yang Cohesive dan Separable ditandai dengan hasil Silhouette Score dan Cophenet Correlation Coefficient yang besar.
Deteksi Gempa Berdasarkan Data Twitter Menggunakan Decision Tree, Random Forest, dan SVM
Rendra Dwi Lingga P.;
Chastine Fatichah;
Diana Purwitasari
Jurnal Teknik ITS Vol 6, No 1 (2017)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (98.486 KB)
|
DOI: 10.12962/j23373539.v6i1.22037
Twitter merupakan salah satu media sosial yang cukup populer saat ini. Pengguna aktif Twitter mencapai kurang lebih 400 juta orang. Fitur utama yang paling penting dari Twitter yaitu layanan yang bersifat real-time dimana pengguna dapat menuliskan catatan singkat tentang apa yang terjadi secara langsung. Sebagai contoh, ketika terjadi bencana alam(gempa bumi) di suatu tempat, banyak pengguna aktif twitter menulis informasi berupa (tweet) tentang gempa bumi yang sedang berlangsung melalui Twitter. Hal ini memungkinkan dibuatnya sebuah metode yang mendeteksi terjadinya gempa atau tidak dengan melakukan observasi melalui tweet yang ada. Dalam tugas akhir ini dibuat sebuah metode klasifikasi untuk membedakan antara tweet yang mengandung informasi gempa yang sesungguhnya (gempa positif) dan tweet yang mengandung informasi gempa namun memiliki arti lain (gempa negatif). Setelah dilakukan klasifikasi menggunakan Decision Tree, Random Forest dan Support Vector Machine (SVM). Hasil yang didapat memberikan nilai akurasi Support Vector Machine (SVM) secara keseluruhan lebih baik daripada Decision Tree dan Random Forest dengan persentase gempa yang dideteksi oleh sistem (Recall) didapatkan nilai 86.3%.dengan precision sebesar 88.7%. Namun jika dilihat dari terdeteksinya gempa oleh sistem tanpa dirata-rata, Random Forest memiliki persentase recall sebesar 96.7% lebih baik daripada Decision Tree dan Random Forest.
PEMBELAJARAN BERTINGKAT PADA ARSITEKTUR JARINGAN SARAF FUNGSI RADIAL BASIS
Diana Purwitasari
Semantik Vol 1, No 1 (2011): Prosiding Semantik 2011
Publisher : Semantik
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (599.112 KB)
Jaringan  saraf  tiruan  (JST)  adalah  jaringan  yang  cara kerjanya  meniru  jaringan  saraf  manusia  ditandai dengan sebuah  set  masukan  dan  sebuah  set  keluaran.  Proses pembelajaran  dalam  jaringan  akan mengekstraksi informasi  dari  berbagai  macam  input  yang  diberikan. Diantara  masukan  dan  keluaran terdapat  layer  untuk memproses  input  yang  dinamakan unit  tersembunyi (hidden  layer).  Salah  satu  model JST  adalah  jaringan saraf  fungsi  radial  basis  (Radial  Basis  Function  Neural Network  =  RBFNN)  yaitu model jaringan saraf dengan satu unit dalam lapisan tersembunyi. Jumlah layer tunggal pada hidden layer menyebabkan  permasalahan  pembelajaran  di RBFNN  dapat  dianggap  sebagai  suatu  sistem  linear. Pada RBFNN  fungsi  aktivasi  yang  digunakan  adalah  fungsi basis  (Gaussian)  dengan  fungsi  linear  di  lapisan output. Dikarenakan  RBFNN  adalah  sistem  linear  sehingga  teknik Orthogonal  Least  Squares  (OLS)  yang menerapkan konsep  basis  orthogonal  dengan  pendekatan  terdekat  ke  solusi sebenarnya  dapat  menjadi salah satu algoritmapembelajaran pada RBFNN. Makalah ini membahas pembelajaran bertingkat sebagai cara  optimasi pembelajaran  pada  RBFNN  yang  menggabungkan  teknik  linear  yaitu Regularized Orthogonal  Least  Sqaures  (ROLS)  dan  non linear  yaitu  algoritma  genetik.  Hasil  ujicoba menunjukkan untuk  semua  data  dengan  persentase pembelajaran  dan  parameter  algoritma  genetik  yang berbeda-beda mempunyai akurasi yang bervariasi pula. Akan tetapi rata-rata hasil ujicoba menghasilkan akurasi di atas 90% dan bahkan untuk beberapa percobaan akurasi bisa mencapai 100%
A STUDY ON RANKING METHOD IN RETRIEVING WEB PAGES BASED ON CONTENT AND LINK ANALYSIS: COMBINATION OF FOURIER DOMAIN SCORING AND PAGERANK SCORING
Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 7, No 1, Januari 2008
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (2047.368 KB)
|
DOI: 10.12962/j24068535.v7i1.a57
Ranking module is an important component of search process which sorts through relevant pages. Since collection of Web pages has additional information inherent in the hyperlink structure of the Web, it can be represented as link score and then combined with the usual information retrieval techniques of content score. In this paper we report our studies about ranking score of Web pages combined from link analysis, PageRank Scoring, and content analysis, Fourier Domain Scoring. Our experiments use collection of Web pages relate to Statistic subject from Wikipedia with objectives to check correctness and performance evaluation of combination ranking method. Evaluation of PageRank Scoring show that the highest score does not always relate to Statistic. Since the links within Wikipedia articles exists so that users are always one click away from more information on any point that has a link attached, it it possible that unrelated topics to Statistic are most likely frequently mentioned in the collection. While the combination method show link score which is given proportional weight to content score of Web pages does effect the retrieval results.
RANCANG BANGUN APLIKASI PENGAMBILAN BERITA SECARA OTOMATIS MENGGUNAKAN CONTENT SYNDICATION BERBASIS XML DENGAN PLATFORM MICROSOFT .NET
Purwitasari, Diana;
Samopa, Febriliyan;
Afrian, Ade
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 3, No 1 Januari 2004
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (207.357 KB)
|
DOI: 10.12962/j24068535.v3i1.a128
Banyaknya kebutuhan akan informasi di internet menyebabkan penyedia jasa situs berita untuk memberikan berita yang selalu yang terbaru. Salah satu alternatif solusi adalah dengan melakukan content syndication. Content syndication adalah adalah proses dimana suatu isi berita dikirimkan atau disediakan, biasanya dengan biaya tertentu, dari penyedia berita, biasanya disebut originators, ke pasar yang membutuhkan atau subscribers. RSS (Rich Site Summary) adalah format yang secara umum digunakan untuk melakukannya. RSS pada dasarnya adalah suatu file yang berada di suatu situs, yang menyediakan informasi tentang isi dari situs tersebut. File tersebut biasa disebut sebagai RSS Feeds dan dapat di ambil dan diolah untuk mendapatkan informasi tentang isi situs tersebut. Dibuat sebuah aplikasi untuk pengambilan situs berita secara otomatis menggunakan content syndication yang memerlukan aplikasi pada proses background untuk mengambil RSS Feeds secara berkala pada komputer yang berfungsi sebagai server. Server yang mengambil berita dari situs penyedia terdiri dari aplikasi yang mengatur konfigurasi berita tersebut, dan sebuah windows service untuk mengambil RSS feeds kemudian mengolahnya secara otomatis. Sedangkan aplikasi untuk membaca berita dari RSS server terdapat pada client berupa sebuah komponen plug-in. Uji coba pertama dilakukan dengan menguji keberhasilan aplikasi dalam mengatur konfigurasi skema, atribut tabel, dan pengaturan kategori situs penyedia RSS. Sedangkan ujicoba kedua dilakukan dengan melakukan perbandingan hasil pencarian berita yang didapat dari program dengan berita dari situs lain yang tidak menerapkan content syndication. Dari hasil pengujian diketahui bahwa aplikasi dengan content syndication mampu melakukan pencarian berita dan memberikan hasil yang lebih baik. Kata Kunci: Content Syndication, RSS, Windows Service, Band Object.
PENGKATEGORIAN ISI BERITA BERBAHASA INDONESIA MENGGUNAKAN ALGORITMA SYMBOLIC RULE INDUCTION BERBASIS DECISION TREE
Purwananto, Yudhi;
Purwitasari, Diana;
Nugroho, Yos
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 3, No 1 Januari 2004
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (218.263 KB)
|
DOI: 10.12962/j24068535.v3i1.a131
Pengkategorian teks sangat penting demi manajemen dan temu kembali pengetahuan yang ada pada teks tersebut. Pengkategorian teks yang dilakukan secara manual akan menghabiskan banyak waktu dan biaya. Karena itu diperlukan suatu sistem yang mampu mengkategorikan teks secara otomatis. Penelitian ini berusaha untuk mengkategorikan teks dengan menggunakan algoritma symbolic rule induction berbasis decision tree. Pengkategorian dilakukan untuk berita berbahasa Indonesia. Dari teks berita tersebut, dipilih fitur-fitur yang relevan untuk masing-masing kategori berdasarkan kriteria Information Gain. Dengan menggunakan fitur-fitur tersebut, dibangun decision tree melalui proses induksi. Untuk meningkatkan akurasi decision tree dilakukan proses pruning. Proses selanjutnya adalah menghasilkan aturan-aturan yang ekivalen secara logis dengan decision tree tersebut dengan memanfaatkan sibling criterion. Algoritma ini diuji coba dengan menggunakan data berita dari situs Detik. Uji coba dilakukan untuk mengetahui pengaruh dari jumlah fitur, jumlah data, dan nilai maksimum suatu fitur terhadap nilai F1 dan waktu komputasi. Hasil uji coba menunjukkan bahwa jumlah fitur dan jumlah data pelatihan yang bertambah cenderung akan meningkatkan nilai F1. Kata Kunci : Text Categorization, DTree, Sibling Criterion, Decision Tree, Symbolic Rule Induction
Siamese Long Short-Term Memory for Detecting Conflict of Interest on Scientific Papers
Ilmi, Akhmad Bakhrul;
Purwitasari, Diana;
Fatichah, Chastine
IPTEK The Journal for Technology and Science Vol 30, No 2 (2019)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (336.155 KB)
|
DOI: 10.12962/j20882033.v30i2.5008
Scientific articles cited by other researchers have an impact on increasing author credibility. However, the citation process may be misused to unnaturally raise a bibliometric indicator value such as researcher’s h-index. Researchers may overly cites their own works, referred as self-citation, even though the topic of the references are not related to the current article. Further misconduct is excessive citations on the works of peoples related to the researcher which can be coercive or not, referred as conflict of interest (CoI). The proposed method uses a deep learning approach, Siamese Long ShortTerm Memory (LSTM), to recognize subject similarities between a scientific article and its references. Standard text similarity fails to do so because contextual relatedness of sentences in the articles need some learning process. Siamese-LSTM learns contextual relatedness of sentences in the article using two identical LSTM. Steps of the proposed method are (i) word-embedding to get weight values of terms but still considers their semantic relations, (ii) k-means clustering to generate training data for reducing time complexity in Siamese-LSTM learning of scientific articles, (iii) learns Siamese-LSTM weight from training data to identify contextual relatedness of sentences, (iv) calculate similarity of a scientific article with its references based on Siamese-LSTM. The empirical experiments are used to analyze similarity values and the possibility for conflict of interest in an article.
PEMILIHAN KOMBINASI PRODUK KOSMETIKA MENGGUNAKAN ALGORITMA GENETIKA
Purwananto, Yudhi;
Purwitasari, Diana;
S., Putu Utami Andarini
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 5, No 2 Juli 2006
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (296.078 KB)
|
DOI: 10.12962/j24068535.v5i2.a236
Pemilihan serangkaian produk kosmetik merupakan permasalahan kombinasi sebab seorang konsumen dapat memilih beberapa jenis produk. Pada pemilihan produk kosmetik akan melibatkan data berjumlah besar dengan setiap paket kosmetik merupakan kombinasi dari beragam produk yang terdapat di pasar. Algoritma genetika mampu melakukan optimasi terhadap permasalahan kombinasi yang melibatkan data berjumlah besar.Solusi-solusi dari pemilihan produk berupa paket-paket produk direpresentasikan dalam string-string biner. Satu string biner mewakili satu paket produk dengan setiap satu segmen terdiri dari beberapa bit merupakan representasi dari sebuah produk. Dilakukan tukar silang yang telah dimodifikasi dengan menentukan titik-titik yang akan dipilih sebagai titik tukar silang sejak pembentukan kromosom. Situasi kromosom yang tidak terdapat dalam database karena proses rekombinasi diatasi dengan dilakukan koreksi mutasi. Kromosom legal diterjemahkan dengan mengambil data-data berupa fitur-fitur produk, nama dan harga produk dari database. Data-data tersebut digunakan untuk melakukan perhitungan nilai fitness total yang bergantung pada rata-rata fitness produk dalam kromosom dan kesesuaian total harga produk dengan anggaran pengguna.Hasil pengujian menunjukkan apabila tanpa operator mutasi maka semakin besar tingkat tukar silang yang digunakan, jumlah generasi yang dibutuhkan untuk mencapai suatu nilai tertentu cenderung berkurang. Namun pada pemilihan produk, nilai fitness terbaik dihasilkan dengan pemakaian mutasi yaitu pada tingkat mutasi 0.09 dan tingkat tukar silang 0.7. Pemilihan metode tukar silang dua titik yang telah dimodifikasi pada pengujian tidak cukup baik hasilnya dibandingkan dengan tukar silang satu titik.Kata Kunci: algoritma genetika, pemilihan produk kosmetik, tukar silang, mutasi.