Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Prosiding Seminar Nasional Rekayasa Teknologi Industri dan Informasi ReTII

the Electrical Resistivity Tomography Untuk Identifikasi Akuifer di Daerah Vulkanik (Studi Kasus: Kaliangkrik-Magelang) Winarti Winarti; Misdiyanta Partama
Retii 2021: Prosiding Seminar Nasional ReTII ke-16
Publisher : Institut Teknologi Nasional Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The availability of ground water is one of the pillars of life, and must be preserved. The first step in conserving groundwater is identifying its presence. The area on the volcano's upper slopes functions as a water catchment, resulting in abundant and high-quality groundwater. The Kaliangrik area, which is located on the slopes of Mount Sumbing, is comprised of volcanic rock. The study's goal was to identify aquifers on volcanic slopes using the Electrical Resistivity Tomography (ERT) method. ERT measurements were taken over a distance of 500 meters, with electrode spacing of 30 meters, and a total n of 6. The Res2DInv software generates a 2D resistivity cross-section that describes the resistivity value laterally and vertically. Aquifers identified through ERT can serve as a basis for groundwater conservation efforts in water catchment areas. The resistivity cross section results show that the topography of the southeast is lower than that of the northwest. The resistivity range is classified into three categories: low (600 ohm meters), high (600-12,000 ohm meters), and very high (> 12,000 ohm meters). Andesite breccia has a low resistivity value as an aquifer, whereas lava has a high resistivity value. The aquifer is 20-25 meters deep (shallow) and includes a porous aquifer system. The southwest (higher topography) is the source of groundwater, so it must be conserved.
The Karakteristik Endapan di Sekitar Kali Serang Kulon Progo, Yogyakarta Winarti Winarti
Retii 2022: Prosiding Seminar Nasional ReTII ke-17
Publisher : Institut Teknologi Nasional Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Serang watershed includes the main river (Kali Serang) and its tributaries, which flow into the Indian Ocean from the Menoreh Hills and estuary. The Serang River downstream has a flat topography and has the potential to be developed as a tourist destination. Furthermore, it is ideal for the development of public service facilities. Sediment deposits (alluvium) of gravel, sand, silt, and sand surround the Serang River. Clay and fine sand are the most common deposits. The purpose of the study was to determine the type of sediment surrounding the Serang River downstream and whether it was expansive or not. A hand borehole was used to collect sediment samples at a depth of 4 meters. The X-Ray Diffraction (XRD) method for sample analysis The sediment was dark brown to black in color, wet, not compacted, sticky, and sized with clay mixed with fine sand and large foraminifera shells, as per megascopic observations. XRD analysis with glycol oriented revealed the presence of Nantronit-15A and Nakrite-2 clay types. The presence of Nantronit-15A is greater than Nakrit-2. Nantronite-15A is a part of the smectite (montmorillonite) group, which can absorb water and has a high swelling-shrinkage proportion (expansive). Nakrit-2 has a monoclinic crystal system, is a part of the kaolinite group, and has a low swelling-shrink capacity (not expansive). Because the distribution of Nantronite-15A is greater than that of Nakrit-2, the sample has a more expansive character. Extensive deposits will be at risk if a building is constructed. As a consequence, efforts must be made to enhance (stabilize) the soil.