Claim Missing Document
Check
Articles

Found 21 Documents
Search

PERANCANGAN APLIKASI PEMBELAJARAN PAKAIAN ADAT ASLI INDONESIA BERBASIS MULTIMEDIA DAN WEB MENERAPKAN METODE COMPUTER ASSISTED INSTRUCTION (CAI) Sagala, Gamrina; Mesran, Mesran; Sutiksno, Dian Utami; Yuhandri, Yuhandri; Suginam, Suginam
JURIKOM (Jurnal Riset Komputer) Vol 4, No 4 (2017): Agustus 2017
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (215.019 KB) | DOI: 10.30865/jurikom.v4i4.711

Abstract

Pakaian adat merupakan simbol kebudayaan yang dimiliki oleh suatu daerah. Pakaian adat juga dapat menjadi simbol yang dimiliki daerah tersebut. Sehingga dengan mengetahui nama dari suatu pakaian adat dapat mewakili suatu daerah dari pakaian adat tersebut berasal. Setiap daerah di Indonesia mempunyai pakaian adat yang berbeda-beda. Biasanya pakaian adat dikenakan untuk memperingati hari besar misalnya, hari kelahiran, pernikahan, kematian, ataupun hari-hari besar keagamaan. Setiap daerah memiliki pengertian pakaian adat sendiri-sendiri. Pentingnya mengenal pakaian adat Asli Indonesia membuat penulis tertarik untuk membuat suatu aplikasi pembelajaran yang digunakan oleh peserta didik dalam mempelajari kebudayaan suatu daerah. Proses pembelajaran yang dibuat akan lebih menarik apabila diterapkannya suatu metode sebagai alat bantu didalam melakukan pembelajaran. Pada penelitian ini peneliti tertarik untuk menggunakan metode CAI (Computer Assisted Instruction), yang didalamnya terdapat materi, drill/practice, simulasi dan game.
Penentuan Materi Layanan Bimbingan TIK Menggunakan Algoritma C4.5 Chandra, Mrs Montesna; Yuhandri, Yuhandri; Na'am, Jufriadif
Jurnal KomtekInfo Vol 6 No 1 (2019): KomtekInfo Vol.6 No.1
Publisher : Lembaga Penelitian Dan Pengabdian Masyarakat UPI-YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29165/komtekinfo.v6i1.162

Abstract

Changes in curriculum from KTSP (Education Unit Level Curriculum) to 2013 Curriculum result in changes in Information and Computer Technology (ICT) subjects to ICT Guidance (BTIK). These subjects are not scheduled in general, so students need to be guided by questionnaires. To find out the right guidance needs data mining is needed. So this research was conducted in determining the accuracy of the guidance needs in accelerating the process of questionnaire data. The method used is C4.5 Algorithm. The results of the study have an accuracy of 90%, so it can be recommended in determining guidance material for students. Keywords: Data Mining, C4.5 Algorithm, ICT, ICT Guidance, Questionnaire
IMPLEMENTASI DATA MINING UNTUK PENGATURAN LAYOUT MINIMARKET DENGAN MENERAPKAN ASSOCIATION RULE Maharani, Maharani; Hasibuan, Nelly Astuti; Silalahi, Natalia; Nasution, Surya Darma; Mesran, Mesran; Suginam, Suginam; Sutiksno, Dian Utami; Nurdiyanto, Heri; Buulolo, Efori; Yuhandri, Yuhandri
JURIKOM (Jurnal Riset Komputer) Vol 4, No 4 (2017): Agustus 2017
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (165.413 KB) | DOI: 10.30865/jurikom.v4i4.686

Abstract

Istilah data mining sudah berkembang jauh dalam mengadaptasi setiap bentuk analisa data, penelitian ini berupaya mengembangkan strategi bisnis penyusunan layout produk yang disesuaikan dengan pola pembelian pelanggan di indomaret. Salah satu teknik data mining yang digunakan untuk merancang strategi penyusunan layout produk yang efektif dengan memanfaatkan data transaksi penjualan yang telah tersedia di perusahaan dengan menggunakan metode association rule. Teknik ini dapat menemukan pola berupa produk-produk yang sering dibeli secara bersamaan. Penelitian ini bertujan untuk menerapkan associstion rule kedalam penyusunan layout produk. Dari rule yang dihasilkan harapkan dapat membantu perusahaan memudahkan dalam penyusunan layout produk.
Perbandingan Algoritma K-Means Clustering dengan Fuzzy C-Means Dalam Mengukur Tingkat Kepuasan Terhadap Televisi Dakwah Surau TV Malik, Rio Andika; Defit, Sarjon; Yuhandri, Yuhandri
RABIT Vol 3 No 1 (2018): Januari
Publisher : RABIT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (573.499 KB)

Abstract

Dawah Television Surau TV is a broadcasting media that presents broadcasts around Islam. This media will quickly develop as it presents broadcasting material in meeting the spiritual needs of its viewers. To Increased media development is highly dependent on the satisfaction of the audience in all aspects of broadcast supporting. It is therefore, to measure the level of audience satisfaction as an effort to generate continuous broadcast quality improvement.This research is performing of algorithm clustering comparation with K-Means Clustering modeling and Fuzzy C-Means modeling to classify and mapping the most appropriate dataset so that it can assist analysing or measuring the level of audience satisfaction toward the dawah television Surau TV. Comparison of clustering algorithm performance with K-Means Clustering modeling and Fuzzy C-Means modeling is based on processing speed and trace value of each RMSE parameter of clustering algorithm. The RMSE result of clustering research using algorithm with K-Means Clustering is 2.09879 and by using algorithm with Fuzzy C-Means model is 2.07911. Fuzzy C-Means modeling speed is faster in conducting the clustering process compared with K-Means Clustering modeling. It can be concluded that clustering with Fuzzy C-Means modeling is able to produce more accurate cluster compared to clustering with K-Means Clustering modeling accuracy   Keywords: Clustering; K-Means; Fuzzy C-Means; Satisfaction rate survey; RMSE
Sistem Pendukung Keputusan SNMPTN Jalur Undangan Dengan Metode Electre Simanjuntak, Lidia K; Sihite, Tessa Y M; Mesran, Mesran; Kurniasih, Nuning; Yuhandri, Yuhandri
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 3 (2018): Edisi Juli
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (771.898 KB) | DOI: 10.30645/jurasik.v3i0.63

Abstract

All colleges each year organize the selection of new admissions. Acceptance of prospective students in universities as education providers is done by selecting prospective students based on achievement in school and college entrance selection. To select the best student candidates based on predetermined criteria, then use Multi-Criteria Decision Making (MCDM) or commonly called decision support system. One method in MCDM is the Elimination Et Choix Traduisant la Reality (ELECTRE). The ELECTRE method is the best method of action selection. The ELECTRE method to obtain the best alternative by eliminating alternative that do not fit the criteria and can be applied to the decision SNMPTN invitation path.
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN GURU PRODUKTIF PESERTA PELATIHAN ASESOR KOMPETENSI LSP P1 SMK SWASTA DWIWARNA MEDAN MENGGUNAKAN METODE THE EXTENDED PROMETHEE II (EXPROM II) Assrani, Dwika; Mesran, Mesran; Sianturi, Ronda Deli; Yuhandri, Yuhandri; Iskandar, Akbar
KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) Vol 2, No 1 (2018): Peranan Teknologi dan Informasi Terhadap Peningkatan Sumber Daya Manusia di Era
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (23.348 KB) | DOI: 10.30865/komik.v2i1.922

Abstract

Vocational schools that have been licensed from BNSP to LSP P1 (first party professional certification institute) are schools that have been able to carry out their own competency certification exams for their students and later a competency assessor who will test and declare the eligibility of the students, competency assessors are productive teachers who have participated in and been given training by the government, in that training the schools choose from the number of productive teachers from each department to become competency assessor trainees in accordance with predetermined criteria so a decision support system is needed so there is no gap in the selection of productive teacher assessor training participants, a vocational school that has become a P1 LSP must have a competency assessor and is a requirement to be a P1 LSP. one of the solutions to the problem is the right one by using the Decision Support System (SPK). Decision Support System (DSS) can help the school in making the decision to choose the productive teacher of the appropriate assessor training and improve the efficiency of the decision. The Extended Promethee II (EXPROM II) is a development of the Promethee II method based on the ideal and anti-ideal solution. Promethee II itself is a method of making decisions on the function of preferences with problems through an outranking approach (ranking) or is a multicriteria analysis, comparing one alternative to another and calculating the alternative gap in pairs so as to produce an output that is alternative ranking based on the highest value.Keywords: Competitive Assessor LSP P1, SPK, The Extended Promethee II
Application Of Weight Sum Model (WSM) In Determining Special Allocation Funds Recipients Handoko, Dikki; Mesran, Mesran; Nasution, Surya Darma; Yuhandri, Yuhandri; Nurdiyanto, Heri
The IJICS (International Journal of Informatics and Computer Science) Vol 1, No 2 (2017): September 2017
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (461.472 KB) | DOI: 10.30865/ijics.v1i2.528

Abstract

In the management of education is not uncommon educational institutions sometimes receive sources of funds from outside, one of which comes from the Department of Education in the implementation of its duty to provide one allocation of funds called Special Allocation Fund (DAK). This assistance is from APBN revenues to areas devoted to schools to help fund special activities such as the addition or improvement of school facilities and infrastructure. The application of this special allocation grantee needs to use a Decision Support System (CMS) to allow decisions to be generated in favor of the DAK beneficiary. In the application of SPK required MCDM method, the Weight Sum Model (WSM), which is a simple method and able to generate ranking from the proposer alternatives in a special allocation fund.
Pengukuran Tinggi Sebenarnya Objek pada Foto Digital Menggunakan Euclidean Distance Kuswandhie, Rakhmad; Na’am, Jufriadif; Yuhandri, Yuhandri
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 2 No 1 (2018): April 2018
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v2i1.334

Abstract

Digital photos are generated from the camera. In the photo there are some object that can be observed. The object in images is a representation of the fact that in the real world. The size of an object in a digital image can represent the true size of an image object with a certain size scale. The actual size of the object in the photo can not be known directly. Digital photos used in the research is the image generated from the camera phone with 8MB resolution and the distance of the camera to photo objects as far as 1, 3 and 5 meters with 3 different objects, ie gallons, chairs and legs. The size of objects in a digital image will be measured using an application created with the C # programming language. Measuring objects in photos using Euclidean Distance. Next is calculated the actual size of the object that is in the photo by using trigonometric function. The test result of 3 objects on digital photos with 3 different distances obtained the actual object size with an accuracy are 99,993%.
Penerapan Algoritma C4.5 untuk Klasifikasi Data Rekam Medis berdasarkan International Classification Diseases (ICD-10) Fiandra, Yudha Aditya; Defit, Sarjon; Yuhandri, Yuhandri
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 1 No 2 (2017): Agustus 2017
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v1i2.48

Abstract

Abstract The medical record data is the patient's current record of medical records, the medical record data only being data stacked and not traced to generate useful knowledge for the hospital. This study can process the medical record data to classify the disease that occurs in sleeping sickness based on ICD-10. The method used in this research is C4.5 algorithm method by using attribute of international disease code as attribute of destination label as many as 21 international disease group, that is: A00-B99 up to Z00-Z99. This study yields a decision of the value code, C4.5 code can represent as many as 14 attribute values ​​of disease code objectives and data percentage that read more than 66%. The conclusion of this research is C4.5 algorithm help classify international disease code based on ICD-10 and decision tree making which can give information of any disease that often happened at hospital Keywords: data mining, classification, C4.5, medical records, ICD-10
Algoritma Backpropagation Prediksi Harga Komoditi terhadap Karakteristik Konsumen Produk Kopi Lokal Nasional Indrayati Sijabat, Petti; Yuhandri, Yuhandri; Widi Nurcahyo, Gunadi; Sindar, Anita
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 11 No. 1 (2020): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (781.869 KB) | DOI: 10.31849/digitalzone.v11i1.3880

Abstract

Kopi bagian penting dari komoditi pasar nasional maupun internasional. Secara nasional jenis kopi lokal beragam sesuai nama daerah penghasil mengalami naik turun harga Perlu perencanaan teknologi untuk mengetahui harga kopi ke depan. Peramalan atau prediksi dalam ilmu komputer berkaitan dengan perkiraan berkala produksi, penawaran dan permintaan pada masa tertentu menggunakan alat ukur yang akurat dan teruji. Metode Backpropagation digunakan untuk prediksi harga. Proses algoritma backpropagation antara lain input data, melakukan tahap normalisasi /transformasi data, iterasi, pelatihan dan menentukan parameter jaringan, kalkulasi error, mendapatkan hasil prediksi. Perancangan arsitektur JST, dilakukan penentuan jumlah layer pada lapisan input, lapisan tersembunyi dan lapisan output. Penelitian ini menggunakan Matlab R2013a dengan metode Backpropagation. Pengambilan input, penelusuran error dan penyesuaian bobot berguna untuk menghasilkan nilai prediksi harga kopi. Hasil prediksi harga kopi dari harga aktual 74205 ke hasil harga prediksi 73668 dengan akurasi 99.9928, harga aktual 73892 ke harga prediksi 73175 dengan akurasi 99.9903, harga aktual 77981 ke hasil prediksi 77481 akurasi 99.9936. Kata Kunci: Syaraf Tiruan, Prediksi, Harga Kopi, Backpropagation Abstract Coffee is an important part of the national and international market commodity. Nationally, the types of local coffee vary according to the name of the producing region experiencing ups and downs in price. It needs technology planning to find out the price of coffee going forward. Forecasting or prediction in computer science is related to periodic estimates of production, supply and demand at certain times using accurate and tested measuring tools. Backpropagation method is used for price prediction. The backpropagation algorithm process includes inputting data, performing the normalization / transformation of data, iterating, training and determining network parameters, calculating errors, getting predictive results. The design of the ANN architecture determines the number of layers in the input layer, the hidden layer and the output layer. This research uses Matlab R2013a. Taking input, tracking errors and adjusting weights are useful for producing predictive value of coffee prices. Coffee prediction results from actual prices 74205 to the predicted price of 73668 with an accuracy of 99.9928, the actual price of 73892 to the predicted price of 73175 with an accuracy of 99.9903, the actual price of 77981 to the predicted result of 77481 with an accuracy of 99.9936. Keywords: Neural Networks, Predictions, Coffee Prices, Backpropagation